login
A362283
Expansion of e.g.f. exp( sqrt(-LambertW(-x^2)) ).
2
1, 1, 1, 4, 13, 106, 601, 7456, 60649, 1012348, 10748161, 225641296, 2957978101, 74847384184, 1168123938073, 34598428916416, 626497273410961, 21261683280971536, 438222313050326209, 16765636110497697088, 387549609831150094621, 16502188154766906299296
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} A034940(k) * binomial(n-1,2*k) * a(n-2*k-1).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sqrt(-lambertw(-x^2)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 14 2023
STATUS
approved