login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362281
a(n) = n! * Sum_{k=0..floor(n/2)} n^k * binomial(n-k,k)/(n-k)!.
2
1, 1, 5, 19, 241, 1601, 32581, 308995, 8655809, 106673761, 3805452901, 57704760851, 2500580809585, 45018720191329, 2295683481085541, 47848514992963651, 2806491306922172161, 66464103165835330625, 4407449313521981148229, 116893033842508769526931
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * [x^n] exp(x + n*x^2).
E.g.f.: exp( sqrt( -LambertW(-2*x^2)/2 ) ) / (1 + LambertW(-2*x^2)).
a(n) ~ (1 + (-1)^n/exp(sqrt(2))) * 2^((n-1)/2) * n^n / exp(n/2 - 1/sqrt(2)). - Vaclav Kotesovec, Apr 15 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sqrt(-lambertw(-2*x^2)/2))/(1+lambertw(-2*x^2))))
CROSSREFS
Sequence in context: A317340 A328716 A067967 * A092751 A357363 A122150
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 14 2023
STATUS
approved