login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122150
Numerator of Sum[ (-1)^(k+1) * 1/2^Prime[k], {k,1,n} ].
3
1, 1, 5, 19, 305, 1219, 19505, 78019, 1248305, 79891519, 319566077, 20452228927, 327235662833, 1308942651331, 20943082421297, 1340357274963007, 85782865597632449, 343131462390529795, 21960413592993906881
OFFSET
1,3
COMMENTS
Denominator of Sum[ (-1)^(k+1) * 1/2^Prime[k], {k,1,n} ] equals 2^Prime[n] = A034765[n]. a(n) is prime for n = {3,4,13,60,66,75,175,...} = A122151[n]. Prime a(n) are {5,19,327235662833,...} = A122152[n]. Parity Prime Constant C = Sum[ (-1)^(k+1) * 1/2^Prime[k], {k,1,Infinity} ]. C = limit[ a(n)/2^Prime[n], n->Infinity ] = 0.148809550788776224969568467866796531982224132808217067371770000563313912... Decimal expansion of Parity Prime Constant C is given in A122153[n]. Binary expansion of Primary Prime Constant C is given in A071986[n] = Mod[Pi[n], 2].
FORMULA
a(n) = Numerator[ Sum[ (-1)^(k+1) * 1/2^Prime[k], {k,1,n} ] ].
MATHEMATICA
Table[Numerator[Sum[(-1)^(k+1)*1/2^Prime[k], {k, 1, n}]], {n, 1, 30}]
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Aug 22 2006
STATUS
approved