login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n! * Sum_{k=0..floor(n/2)} n^k * binomial(n-k,k)/(n-k)!.
2

%I #20 Apr 15 2023 15:16:48

%S 1,1,5,19,241,1601,32581,308995,8655809,106673761,3805452901,

%T 57704760851,2500580809585,45018720191329,2295683481085541,

%U 47848514992963651,2806491306922172161,66464103165835330625,4407449313521981148229,116893033842508769526931

%N a(n) = n! * Sum_{k=0..floor(n/2)} n^k * binomial(n-k,k)/(n-k)!.

%H Seiichi Manyama, <a href="/A362281/b362281.txt">Table of n, a(n) for n = 0..395</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.

%F a(n) = n! * [x^n] exp(x + n*x^2).

%F E.g.f.: exp( sqrt( -LambertW(-2*x^2)/2 ) ) / (1 + LambertW(-2*x^2)).

%F a(n) ~ (1 + (-1)^n/exp(sqrt(2))) * 2^((n-1)/2) * n^n / exp(n/2 - 1/sqrt(2)). - _Vaclav Kotesovec_, Apr 15 2023

%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sqrt(-lambertw(-2*x^2)/2))/(1+lambertw(-2*x^2))))

%Y Cf. A277614, A362282.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Apr 14 2023