login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121813
a(n) = sum_{j=1..4} product_{k=1..4, k<>j} a(n-k).
0
0, 1, 1, 1, 1, 4, 13, 121, 8401, 17724001, 19980403610080, 3017939125082738100693961, 1069257489122187637992525695378883464262898201
OFFSET
1,6
FORMULA
a(n) = a(n-4)*a(n-3)*a(n-2) + a(n-4)*a(n-3)*a(n-1) + a(n-4)*a(n-2)*a(n-1) + a(n-3)*a(n-2)*a(n-1).
EXAMPLE
a(8) = a(4)*a(5)*a(6)+a(4)*a(5)*a(7)+a(4)*a(6)*a(7)+a(5)*a(6)*a(7) = 1*1*4 +1*1*13 +1*4*13 +1*4*13 = 121.
MATHEMATICA
a[0] = 0; a[1] = 1; a[2] = 1; a[3] = 1; a[n_] : a[n] = a[ -4 + n] a[ -3 + n] a[ -2 + n] + a[ -4 + n] a[ -3 + n] a[ -1 + n] + a[ -4 + n] a[ -2 + n] a[ -1 + n] + a[ -3 + n] a[ -2 + n] a[ -1 + n] b = Table[a[n], {n, 0, 15}]
RecurrenceTable[{a[0]==0, a[1]==a[2]==a[3]==1, a[n]==a[n-4]a[n-3]a[n-2]+a[n-4]a[n-3]a[n-1]+a[n-4]a[n-2]a[n-1]+a[n-3]a[n-2]a[n-1]}, a, {n, 15}] (* Harvey P. Dale, Aug 18 2014 *)
CROSSREFS
Sequence in context: A276912 A045886 A015460 * A197897 A203380 A006104
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Aug 30 2006
EXTENSIONS
Explicit definition provided by the Assoc. Eds. of the OEIS - Mar 27 2010
STATUS
approved