login
A121811
a(n) is the floor of the first component of M^n * (0, 1, 2, 3) where M is the matrix [[c, 1/2, 1/2, 1/2], [1/2, c, 1/2, 1/2], [1/2, 1/2, c, 1/2], [1/2, 1/2, 1/2, c]] and c=sqrt(3)/2.
0
0, 3, 8, 19, 46, 111, 263, 622, 1473, 3485, 8246, 19512, 46166, 109230, 258441, 611480, 1446777, 3423112, 8099170, 19162842, 45339771, 107275050, 253815495, 600533909, 1420878484, 3361834590, 7954186044, 18819806248, 44528139677, 105354709660, 249271919464, 589783693902
OFFSET
1,2
MATHEMATICA
M = N[Abs[MatrixPower[{{0, 1, 1, 1}, {1, 0, 1, 1}, {1, 1, 0, 1}, {1, 1, 1, 0}}, 1/2]]]
v[1] = {0, 1, 2, 3}
v[n_] := v[n] = M.v[n - 1]
Table[Floor[v[n][[1]]], {n, 1, 50}]
PROG
(PARI) B(n)={concat([0, 0, 0], Vec(1/((1 - 6*x + 6*x^2)*(1 + 2*x - 2*x^2)) + O(x^n)))}
seq(n)={my(v=B(n)); vector(n, k, (3*(v[k+2]-2*v[k+1]) + sqrtint(108*(v[k+1]-v[k])^2))\2^(k-2))} \\ Andrew Howroyd, Jan 12 2025
CROSSREFS
Cf. A120471.
Sequence in context: A309537 A126874 A284942 * A370033 A244208 A296329
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Aug 30 2006
EXTENSIONS
Name clarified by Sean A. Irvine, Jan 12 2025
a(30) onwards from Andrew Howroyd, Jan 12 2025
STATUS
approved