login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284942
Expansion of Sum_{k>=1} mu(k)^2*x^k*(1 - x)^2/(1 - 2*x)^2, where mu() is the Moebius function (A008683).
2
1, 3, 8, 19, 46, 107, 244, 547, 1213, 2665, 5807, 12567, 27042, 57899, 123428, 262115, 554750, 1170538, 2463154, 5170462, 10829234, 22635087, 47223412, 98353299, 204519549, 424665001, 880581806, 1823667221, 3772341661, 7794697759, 16089424392, 33178906531, 68357928558
OFFSET
1,2
COMMENTS
Total number of squarefree parts in all compositions (ordered partitions) of n.
FORMULA
G.f.: Sum_{k>=1} mu(k)^2*x^k*(1 - x)^2/(1 - 2*x)^2.
EXAMPLE
a(4) = 19 because we have [4], [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1] and 0 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 19.
MAPLE
a:= proc(n) option remember; add(`if`(numtheory[
issqrfree](j), ceil(2^(n-j-1)), 0)+a(n-j), j=1..n)
end:
seq(a(n), n=1..33); # Alois P. Heinz, Aug 07 2019
MATHEMATICA
nmax = 33; Rest[CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k (1 - x)^2/(1 - 2 x)^2, {k, 1, nmax}], {x, 0, nmax}], x]]
PROG
(PARI) x='x+O('x^34); Vec(sum(k=1, 34, moebius(k) ^2*x^k*(1 - x)^2/(1 - 2*x)^2)) \\ Indranil Ghosh, Apr 06 2017
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 06 2017
STATUS
approved