login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = f(k) for k < n+1, otherwise 0, where f(k) = f(k-1) + k^(k-2)*f(k-2) with f(0) = 0 and f(1) = 1, read by rows.
1

%I #8 Dec 02 2022 07:05:33

%S 1,1,1,1,1,4,1,1,4,20,1,1,4,20,520,1,1,4,20,520,26440,1,1,4,20,520,

%T 26440,8766080,1,1,4,20,520,26440,8766080,6939853440,1,1,4,20,520,

%U 26440,8766080,6939853440,41934828744960,1,1,4,20,520,26440,8766080,6939853440,41934828744960,694027278828744960

%N Triangle T(n, k) = f(k) for k < n+1, otherwise 0, where f(k) = f(k-1) + k^(k-2)*f(k-2) with f(0) = 0 and f(1) = 1, read by rows.

%H G. C. Greubel, <a href="/A136680/b136680.txt">Rows n = 1..30 of the triangle, flattened</a>

%F T(k) = T(k-1) + n^(k-2)*T(k-2), with T(0) = 0, T(1) = 1.

%F T(n, k) = f(k) for k < n+1, otherwise 0, where f(k) = f(k-1) + k^(k-2)*f(k-2) with f(0) = 0 and f(1) = 1. - _G. C. Greubel_, Dec 01 2022

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 1, 4;

%e 1, 1, 4, 20;

%e 1, 1, 4, 20, 520;

%e 1, 1, 4, 20, 520, 26440;

%e 1, 1, 4, 20, 520, 26440, 8766080;

%e 1, 1, 4, 20, 520, 26440, 8766080, 6939853440;

%e 1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 41934828744960;

%t T[k_]:= T[k]= If[k<2, k, T[k-1] + n^(k-2)*T[k-2]];

%t Table[T[k], {n,10}, {k,n}]//Flatten

%o (Magma)

%o function f(k)

%o if k lt 2 then return k;

%o else return f(k-1) + k^(k-2)*f(k-2);

%o end if; return f;

%o end function;

%o A136680:= func< n,k | k le n select f(k) else 0 >;

%o [A136680(n,k): k in [1..n], n in [1..14]]; // _G. C. Greubel_, Dec 01 2022

%o (SageMath)

%o @CachedFunction

%o def f(k):

%o if (k<2): return k

%o else: return f(k-1) + k^(k-2)*f(k-2)

%o def A136680(n,k): return f(k) if (k < n+1) else 0

%o flatten([[A136680(n,k) for k in range(1,n+1)] for n in range(1,15)]) # _G. C. Greubel_, Dec 01 2022

%Y q-Fibonacci numbers include: A015459, A015460, A015461, A015462, A015463, A015464, A015465, A015467, A015468, A015469, A015470, A015473, A015474, A015475, A015476, A015477, A015479, A015480, A015481, A015482, A015484, A015485.

%K nonn,tabl

%O 1,6

%A _Roger L. Bagula_, Apr 06 2008

%E Edited by _G. C. Greubel_, Dec 01 2022