login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136412
a(n) = (5*4^n + 1)/3.
13
2, 7, 27, 107, 427, 1707, 6827, 27307, 109227, 436907, 1747627, 6990507, 27962027, 111848107, 447392427, 1789569707, 7158278827, 28633115307, 114532461227, 458129844907, 1832519379627, 7330077518507, 29320310074027
OFFSET
0,1
COMMENTS
An Engel expansion of 4/5 to the base b := 4/3 as defined in A181565, with the associated series expansion 4/5 = b/2 + b^2/(2*7) + b^3/(2*7*27) + b^4/(2*7*27*107) + .... Cf. A199115 and A140660. - Peter Bala, Oct 29 2013
FORMULA
a(n) = 4*a(n-1) - 1.
a(n) = A199115(n)/3.
O.g.f.: (2-3*x)/((1-x)*(1-4*x)). - R. J. Mathar, Apr 04 2008
a(n) = 5*a(n-1) - 4*a(n-2). - Vincenzo Librandi, Nov 04 2011
E.g.f.: (1/3)*(5*exp(4*x) + exp(x)). - G. C. Greubel, Jan 19 2023
MATHEMATICA
LinearRecurrence[{5, -4}, {2, 7}, 31] (* G. C. Greubel, Jan 19 2023 *)
PROG
(Magma) [(5*4^n+1)/3: n in [0..30]]; // Vincenzo Librandi, Nov 04 2011
(Haskell)
a136412 = (`div` 3) . (+ 1) . (* 5) . (4 ^)
-- Reinhard Zumkeller, Jun 17 2012
(PARI) a(n)=(5*4^n+1)/3 \\ Charles R Greathouse IV, Oct 07 2015
(SageMath) [(5*4^n+1)/3 for n in range(31)] # G. C. Greubel, Jan 19 2023
CROSSREFS
Sequences of the form (m*4^n + 1)/3: A007583 (m=2), this sequence (m=5), A199210 (m=11), A199210 (m=11), A206373 (m=14).
Sequence in context: A150592 A150593 A024429 * A360149 A192417 A150594
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Mar 31 2008
EXTENSIONS
Formula in definition and more terms from R. J. Mathar, Apr 04 2008
STATUS
approved