OFFSET
0,5
COMMENTS
a(n) is the exponent of the greatest power of 3 not exceeding 2^n.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Titu Andreescu and Dorin Andrica, On a class of sums involving the floor function, Mathematical Reflections 3, 2006.
H. W. Gould and Jocelyn Quaintance, Floor and Roof Function Analogs of the Bell Numbers, INTEGERS: El. J. Comb. Number Theory 7 (2007), #A58.
FORMULA
From Benjamin Lombardo, Sep 08 2019: (Start)
a(A020914(k)) = k.
MATHEMATICA
With[{k = Log[3, 2]}, Array[Floor[k #] &, 75, 0]] (* Michael De Vlieger, Sep 29 2019 *)
PROG
(Haskell)
a136409 = floor . (* logBase 3 2) . fromIntegral
-- Reinhard Zumkeller, Jul 03 2015
(PARI) a(n)=logint(2^n, 3) \\ Charles R Greathouse IV, Sep 02 2015
(Python)
from sympy import integer_log
def A136409(n): return integer_log(1<<n, 3)[0] # Chai Wah Wu, Oct 09 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ctibor O. Zizka, Mar 31 2008
STATUS
approved