Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Oct 04 2024 12:25:36
%S 2,7,27,107,427,1707,6827,27307,109227,436907,1747627,6990507,
%T 27962027,111848107,447392427,1789569707,7158278827,28633115307,
%U 114532461227,458129844907,1832519379627,7330077518507,29320310074027
%N a(n) = (5*4^n + 1)/3.
%C An Engel expansion of 4/5 to the base b := 4/3 as defined in A181565, with the associated series expansion 4/5 = b/2 + b^2/(2*7) + b^3/(2*7*27) + b^4/(2*7*27*107) + .... Cf. A199115 and A140660. - _Peter Bala_, Oct 29 2013
%H Vincenzo Librandi, <a href="/A136412/b136412.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-4).
%F a(n) = 4*a(n-1) - 1.
%F a(n) = A199115(n)/3.
%F O.g.f.: (2-3*x)/((1-x)*(1-4*x)). - _R. J. Mathar_, Apr 04 2008
%F a(n) = 5*a(n-1) - 4*a(n-2). - _Vincenzo Librandi_, Nov 04 2011
%F E.g.f.: (1/3)*(5*exp(4*x) + exp(x)). - _G. C. Greubel_, Jan 19 2023
%t LinearRecurrence[{5,-4}, {2,7}, 31] (* _G. C. Greubel_, Jan 19 2023 *)
%o (Magma) [(5*4^n+1)/3: n in [0..30]]; // _Vincenzo Librandi_, Nov 04 2011
%o (Haskell)
%o a136412 = (`div` 3) . (+ 1) . (* 5) . (4 ^)
%o -- _Reinhard Zumkeller_, Jun 17 2012
%o (PARI) a(n)=(5*4^n+1)/3 \\ _Charles R Greathouse IV_, Oct 07 2015
%o (SageMath) [(5*4^n+1)/3 for n in range(31)] # _G. C. Greubel_, Jan 19 2023
%Y Sequences of the form (m*4^n + 1)/3: A007583 (m=2), this sequence (m=5), A199210 (m=11), A199210 (m=11), A206373 (m=14).
%Y Cf. A007302, A140660, A181565, A199115.
%K nonn,easy
%O 0,1
%A _Paul Curtz_, Mar 31 2008
%E Formula in definition and more terms from _R. J. Mathar_, Apr 04 2008