login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A136308
a(n) = (10^2^n - 1)/9.
4
1, 11, 1111, 11111111, 1111111111111111, 11111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111111111111
OFFSET
0,2
COMMENTS
More generally, reading in base B >= 2: a(n) = (B^2^n - 1)/(B-1).
Recurrence: a(n) = a(n-1)*(B^K + 1) and a(0)=1 where K = floor(log_B a(n-1)) + 1.
B = 2 gives A051179; B = 3 gives A059918.
FORMULA
a(n) = a(n-1)*(10^K + 1) and a(0)=1 where K=floor(log_10 a(n-1)) + 1 = 2^n + 1.
a(n) = A000042(A000079(n)) = A007088(A051179(n)) = A007089(A059918(n)).
MATHEMATICA
(10^2^Range[0, 10] - 1)/9 (* G. C. Greubel, Apr 19 2021 *)
PROG
(Magma) A136308 := func<n|(10^2^n-1)/9>; [A136308(n):n in[0..7]];
(Sage) [(10^2^n -1)/9 for n in (0..10)] # G. C. Greubel, Apr 19 2021
CROSSREFS
Cf. A000042 (repunits).
In other bases: A051179, A059918.
Sequence in context: A340549 A260077 A068053 * A343837 A303067 A075600
KEYWORD
easy,nonn
AUTHOR
Ctibor O. Zizka, Mar 22 2008
EXTENSIONS
Edited by Jason Kimberley, Dec 18 2012
STATUS
approved