OFFSET
0,3
COMMENTS
Column 0 of A135330. Partial sums of the Fine sequence 1,0,1,2,6,18,... (A000957 without the first term). - Emeric Deutsch, Dec 14 2007
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
FORMULA
From Emeric Deutsch, Dec 14 2007: (Start)
a(n) = Sum_{j=0..floor(n/3)} (-1)^j*(3*j+1)*binomial(2*n-3*j,n)/(n+1).
G.f.: C/(1+z^3*C^3) = C/[(1-z)*(1+z*C)], where C = [1-sqrt(1-4*z)]/(2*z) is the g.f. of the Catalan numbers (A000108). (End)
a(n) ~ 4^(n+2)/(27*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
EXAMPLE
a(3)=4 because among the 5 (=A000108(3)) Dyck paths of semilength 3 only UUDUDD does not qualify.
MAPLE
a:=proc(n) options operator, arrow: (sum((-1)^j*(3*j+1)*binomial(2*n-3*j, n), j =0..floor((1/3)*n)))/(n+1) end proc: seq(a(n), n=0..25); # Emeric Deutsch, Dec 14 2007
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x)/((1-x)*(1+x*(1-Sqrt[1-4*x])/(2*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) x='x+O('x^50); Vec((1-sqrt(1-4*x))/(x*(1-x)*(3 - sqrt(1-4*x)))) \\ G. C. Greubel, Mar 21 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 07 2007
EXTENSIONS
Edited and extended by Emeric Deutsch, Dec 14 2007
STATUS
approved