login
A135335
Number of Dyck paths of semilength n having no DDUU's starting at level 2.
2
1, 1, 2, 5, 13, 36, 106, 327, 1045, 3433, 11529, 39414, 136733, 480180, 1703807, 6099193, 22000823, 79890801, 291808480, 1071403389, 3952020216, 14638293671, 54424065467, 203034222400, 759790586108, 2851348853311
OFFSET
0,3
COMMENTS
a(n) = A135329(n,0). - Emeric Deutsch, Dec 13 2007
LINKS
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
FORMULA
G.f.: (1-2*C+z*C)/(2*z*C-C*z^2-C-z), where C=(1-sqrt(1-4*z))/(2*z) is the g.f. of the Catalan numbers (A000108). - Emeric Deutsch, Dec 13 2007
a(n) ~ 4^(n+3)/(121*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: n*a(n) +(-7*n+6)*a(n-1) +2*(8*n-9)*a(n-2) +6*(-3*n+4)*a(n-3) +3*(3*n-4)*a(n-4) +2*(-2*n+3)*a(n-5)=0. - R. J. Mathar, Jun 17 2016
EXAMPLE
a(4)=13 because among the 14 (=A000108(4)) Dyck paths of semilength 4 only UUDDUUDD does not qualify.
MAPLE
g:=(1-2*C+z*C)/(2*z*C-C*z^2-C-z): C:=((1-sqrt(1-4*z))*1/2)/z: gser:=series(g, z=0, 30): seq(coeff(gser, z, n), n=0..25); # Emeric Deutsch, Dec 13 2007
MATHEMATICA
CoefficientList[Series[(1-2*((1-Sqrt[1-4*x])*1/2)/x+x*((1-Sqrt[1-4*x])*1/2)/x)/(2*x*((1-Sqrt[1-4*x])*1/2)/x-((1-Sqrt[1-4*x])*1/2)/x*x^2-((1-Sqrt[1-4*x])*1/2)/x-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) x='x+O('x^50); Vec((3*x-2+(2-x)*sqrt(1-4*x))/((x-1)^2*sqrt(1-4*x) - (3*x^2 - 2*x +1))) \\ G. C. Greubel, Mar 21 2017
CROSSREFS
Sequence in context: A135337 A133365 A370886 * A336989 A066723 A000994
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 07 2007
EXTENSIONS
Edited and extended by Emeric Deutsch, Dec 13 2007
STATUS
approved