OFFSET
0,3
COMMENTS
Column 0 of A135328. - Emeric Deutsch, Dec 14 2007
The inverse Catalan transform is 1 followed by A133872. - R. J. Mathar, Mar 20 2009
2-colored Motzkin paths of length n with no peaks at level 1. - José Luis Ramírez Ramírez, Dec 08 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
FORMULA
From Emeric Deutsch, Dec 14 2007: (Start)
a(n) = 2*(Sum_{j=0..floor((n-1)/2)} (-1)^j*(j+1)*binomial(2n-2j-1,n))/(n+1) (n >= 1).
G.f.: 1 + z*C^2/(1 + z^2*C^2), where C = (1-sqrt(1-4z))/(2z) is the g.f. of the Catalan numbers (A000108). (End)
Conjecture: 2*(n+1)*a(n) + 2*(1-5n)*a(n-1) + 3*(3n-1)*a(n-2) + 2*(1-2n)*a(n-3) = 0. - R. J. Mathar, Dec 18 2011
a(n) ~ 4^(n+2) / (25 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014
EXAMPLE
a(3)=4 because among the 5 (=A000108(3)) Dyck paths of semilength 3 only UUDDUD does not qualify.
MAPLE
a := n -> 2*(add((-1)^j*(j+1)*binomial(2*n-2*j-1, n), j=0..floor((n-1)/2)))/(n+1): 1, seq(a(n), n=1..25); # Emeric Deutsch, Dec 14 2007
G:=1+z*C^2/(1+z^2*C^2): C:=((1-sqrt(1-4*z))*1/2)/z: Gser:=series(G, z=0, 30); seq(coeff(Gser, z, n), n=0..25); # Emeric Deutsch, Dec 14 2007
MATHEMATICA
CoefficientList[Series[1+x*((1-Sqrt[1-4*x])/(2*x))^2/(1+x^2*((1-Sqrt[1-4*x])/(2*x))^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 07 2007
EXTENSIONS
Edited and extended by Emeric Deutsch, Dec 14 2007
STATUS
approved