login
A135330
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k UUDU's starting at level 0.
1
1, 1, 2, 4, 1, 10, 4, 28, 14, 85, 46, 1, 271, 151, 7, 893, 502, 35, 3013, 1697, 151, 1, 10351, 5828, 607, 10, 36075, 20293, 2353, 65, 127219, 71494, 8952, 346, 1, 453097, 254404, 33738, 1648, 13, 1627378, 913028, 126594, 7336, 104
OFFSET
0,3
COMMENTS
Row n has 1+floor(n/3) terms. Row sums yield the Catalan numbers (A000108). Column 0 yields A135336. - Emeric Deutsch, Dec 14 2007
LINKS
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
FORMULA
From Emeric Deutsch, Dec 14 2007: (Start)
T(n,k) = (1/(n+1))*Sum_{j=k..floor(n/3)} (-1)^(j-k)*(3j+1)*binomial(j,k)*binomial(2n-3j, n).
G.f.: C/(1 + (1-t)z^3*C^3), where C = (1-sqrt(1-4z))/(2z) is the g.f. of the Catalan numbers (A000108). (End)
EXAMPLE
Triangle begins:
1;
1;
2;
4, 1;
10, 4;
28, 14;
85, 46, 1;
271, 151, 7;
893, 502, 35;
3013, 1697, 151, 1;
10351, 5828, 607, 10;
...
T(4,1)=4 because we have UUDUDDUD, UUDUUDDD, UUDUDUDD and UDUUDUDD.
MAPLE
T:=proc(n, k) options operator, arrow: (sum((-1)^(j-k)*(3*j+1)*binomial(j, k)*binomial(2*n-3*j, n), j=k..floor((1/3)*n)))/(n+1) end proc: for n from 0 to 14 do seq(T(n, k), k=0..floor((1/3)*n)) end do; # yields sequence in triangular form; Emeric Deutsch, Dec 14 2007
CROSSREFS
Sequence in context: A228337 A114506 A114848 * A135328 A355144 A346419
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Dec 07 2007
EXTENSIONS
Edited and extended by Emeric Deutsch, Dec 14 2007
STATUS
approved