login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135330
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k UUDU's starting at level 0.
1
1, 1, 2, 4, 1, 10, 4, 28, 14, 85, 46, 1, 271, 151, 7, 893, 502, 35, 3013, 1697, 151, 1, 10351, 5828, 607, 10, 36075, 20293, 2353, 65, 127219, 71494, 8952, 346, 1, 453097, 254404, 33738, 1648, 13, 1627378, 913028, 126594, 7336, 104
OFFSET
0,3
COMMENTS
Row n has 1+floor(n/3) terms. Row sums yield the Catalan numbers (A000108). Column 0 yields A135336. - Emeric Deutsch, Dec 14 2007
LINKS
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
FORMULA
From Emeric Deutsch, Dec 14 2007: (Start)
T(n,k) = (1/(n+1))*Sum_{j=k..floor(n/3)} (-1)^(j-k)*(3j+1)*binomial(j,k)*binomial(2n-3j, n).
G.f.: C/(1 + (1-t)z^3*C^3), where C = (1-sqrt(1-4z))/(2z) is the g.f. of the Catalan numbers (A000108). (End)
EXAMPLE
Triangle begins:
1;
1;
2;
4, 1;
10, 4;
28, 14;
85, 46, 1;
271, 151, 7;
893, 502, 35;
3013, 1697, 151, 1;
10351, 5828, 607, 10;
...
T(4,1)=4 because we have UUDUDDUD, UUDUUDDD, UUDUDUDD and UDUUDUDD.
MAPLE
T:=proc(n, k) options operator, arrow: (sum((-1)^(j-k)*(3*j+1)*binomial(j, k)*binomial(2*n-3*j, n), j=k..floor((1/3)*n)))/(n+1) end proc: for n from 0 to 14 do seq(T(n, k), k=0..floor((1/3)*n)) end do; # yields sequence in triangular form; Emeric Deutsch, Dec 14 2007
CROSSREFS
Sequence in context: A228337 A114506 A114848 * A135328 A355144 A346419
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Dec 07 2007
EXTENSIONS
Edited and extended by Emeric Deutsch, Dec 14 2007
STATUS
approved