login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355144
Number T(n,k) of partitions of [n] having exactly k blocks of size at least three; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.
3
1, 1, 2, 4, 1, 10, 5, 26, 26, 76, 117, 10, 232, 540, 105, 764, 2445, 931, 2620, 11338, 6909, 280, 9496, 53033, 48546, 4900, 35696, 253826, 324753, 64295, 140152, 1235115, 2131855, 691075, 15400, 568504, 6142878, 13792779, 6739876, 400400, 2390480, 31126539, 88890880, 61274213, 7217210
OFFSET
0,3
LINKS
FORMULA
Sum_{k=1..n} k * T(n,k) = A288785(n).
EXAMPLE
T(4,1) = 5: 1234, 123|4, 124|3, 134|2, 1|234.
T(6,2) = 10: 123|456, 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
Triangle T(n,k) begins:
1;
1;
2;
4, 1;
10, 5;
26, 26;
76, 117, 10;
232, 540, 105;
764, 2445, 931;
2620, 11338, 6909, 280;
9496, 53033, 48546, 4900;
35696, 253826, 324753, 64295;
140152, 1235115, 2131855, 691075, 15400;
...
MAPLE
b:= proc(n) option remember; expand(`if`(n=0, 1, add(
`if`(i>2, x, 1)*binomial(n-1, i-1)*b(n-i), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..14); # Alois P. Heinz, Jun 20 2022
MATHEMATICA
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[If[i > 2, x, 1]*
Binomial[n - 1, i - 1]*b[n - i], {i, 1, n}]]];
T[n_] := CoefficientList[b[n], x];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 25 2022, after Alois P. Heinz *)
CROSSREFS
Column k=0 gives A000085.
Row sums give A000110.
T(3n,n) gives A025035.
Sequence in context: A114848 A135330 A135328 * A346419 A048941 A308300
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jun 20 2022
STATUS
approved