login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048941
a(n) is twice the coefficient of 1 in the fundamental unit of Q(sqrt(A000037(n))) where A000037 lists the nonsquare numbers (Version 1).
6
2, 4, 1, 10, 16, 2, 6, 20, 4, 3, 30, 8, 8, 34, 340, 4, 5, 394, 48, 10, 10, 52, 16, 5, 22, 3040, 6, 46, 70, 12, 12, 74, 50, 6, 64, 26, 6964, 20, 7, 48670, 96, 14, 14, 100, 36, 7, 970, 178, 30, 302, 198, 1060, 8, 39, 126, 16, 16, 130, 97684, 8, 25, 502, 6960, 34
OFFSET
1,1
COMMENTS
From Sean A. Irvine, Jul 16 2021: (Start)
These values are computed by Algorithm 5.7.2 in Cohen.
Other methods of computation (see A346419) give different results, with the first difference at n=14.
(End)
a(n) is the smallest positive integer x satisfying the Pell equation x^2 - D*y^2 = +-4, where D = A000037(n). - Jinyuan Wang, Sep 08 2021
REFERENCES
Henri Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, 1993.
LINKS
S. R. Finch, Class number theory
Steven R. Finch, Class number theory [Cached copy, with permission of the author]
Sean A. Irvine, Java program (github)
Eric Weisstein's World of Mathematics, Fundamental Unit.
PROG
(PARI) a(n) = my(A, D=n+(1+sqrtint(4*n))\2, d=sqrtint(D), p, q, t, u1, u2, v1, v2); if(d%2==D%2, p=d, p=d-1); u1=-p; u2=2; v1=1; v2=0; q=2; while(v2==0 || q!=t, A=(p+d)\q; t=p; p=A*q-p; if(t==p && v2!=0, return((u2^2+D*v2^2)/q), t=A*u2+u1; u1=u2; u2=t; t=A*v2+v1; v1=v2; v2=t; t=q; q=(D-p^2)/q)); (u1*u2+D*v1*v2)/q; \\ Jinyuan Wang, Sep 08 2021
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Name edited by Michel Marcus, Jun 26 2020
Entry revised by Sean A. Irvine, Jul 13 2021
STATUS
approved