Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 16 2019 16:22:19
%S 1,1,2,4,1,10,4,28,14,85,46,1,271,151,7,893,502,35,3013,1697,151,1,
%T 10351,5828,607,10,36075,20293,2353,65,127219,71494,8952,346,1,453097,
%U 254404,33738,1648,13,1627378,913028,126594,7336,104
%N Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k UUDU's starting at level 0.
%C Row n has 1+floor(n/3) terms. Row sums yield the Catalan numbers (A000108). Column 0 yields A135336. - _Emeric Deutsch_, Dec 14 2007
%H A. Sapounakis, I. Tasoulas and P. Tsikouras, <a href="http://dx.doi.org/10.1016/j.disc.2007.03.005">Counting strings in Dyck paths</a>, Discrete Math., 307 (2007), 2909-2924.
%F From _Emeric Deutsch_, Dec 14 2007: (Start)
%F T(n,k) = (1/(n+1))*Sum_{j=k..floor(n/3)} (-1)^(j-k)*(3j+1)*binomial(j,k)*binomial(2n-3j, n).
%F G.f.: C/(1 + (1-t)z^3*C^3), where C = (1-sqrt(1-4z))/(2z) is the g.f. of the Catalan numbers (A000108). (End)
%e Triangle begins:
%e 1;
%e 1;
%e 2;
%e 4, 1;
%e 10, 4;
%e 28, 14;
%e 85, 46, 1;
%e 271, 151, 7;
%e 893, 502, 35;
%e 3013, 1697, 151, 1;
%e 10351, 5828, 607, 10;
%e ...
%e T(4,1)=4 because we have UUDUDDUD, UUDUUDDD, UUDUDUDD and UDUUDUDD.
%p T:=proc(n,k) options operator, arrow: (sum((-1)^(j-k)*(3*j+1)*binomial(j,k)*binomial(2*n-3*j,n),j=k..floor((1/3)*n)))/(n+1) end proc: for n from 0 to 14 do seq(T(n,k),k=0..floor((1/3)*n)) end do; # yields sequence in triangular form; _Emeric Deutsch_, Dec 14 2007
%Y Cf. A000108, A135336.
%K nonn,tabf
%O 0,3
%A _N. J. A. Sloane_, Dec 07 2007
%E Edited and extended by _Emeric Deutsch_, Dec 14 2007