login
A134546
Lower triangular matrix multiplication: A004736 * A051731.
4
1, 3, 1, 6, 2, 1, 10, 4, 2, 1, 15, 6, 3, 2, 1, 21, 9, 5, 3, 2, 1, 28, 12, 7, 4, 3, 2, 1, 36, 16, 9, 6, 4, 3, 2, 1, 45, 20, 12, 8, 5, 4, 3, 2, 1, 55, 25, 15, 10, 7, 5, 4, 3, 2, 1, 66, 30, 18, 12, 9, 6, 5, 4, 3, 2, 1, 78, 36, 22, 15, 11, 8, 6, 5, 4, 3, 2, 1, 91, 42, 26, 18, 13, 10, 7, 6, 5, 4, 3, 2, 1
OFFSET
1,2
COMMENTS
Row sums = A078567: (1, 4, 9, 17, 27, 41, 57, ...).
T(n ,1) = A000217(n), n >= 1.
From Bob Selcoe, Aug 08 2016: (Start)
Columns are partial sums of k-repeating increasing positive integers:
Column 1 is {1+2+3+4+5+...} = A000217 (triangular numbers);
Column 2 is {1+1+2+2+3+3+4+4+...} = A002620 (quarter-squares);
Column 3 is {1+1+1+2+2+2+3+3+3+...} = A130518.
Columns k = 4..7 are A130519, A130520, A174709 and A174738, respectively.
Row sums are A078567(n+1).
T(n,k) is the number of positive multiples of k which can be expressed as i-j, {i=1..n; j=0..n-1}. So for example, T(5,2)=6 because there are 6 ways to express i-j {i<=5} as a multiple of 2: {5-3, 4-2, 3-1, 2-0, 5-1 and 4-0}.
(End)
Conjecture: For T(n,k) n >= k^(3/2), there is at least one prime in the interval [T(n-1,k+1), T(n,k)]. - Bob Selcoe, Aug 21 2016
Theorem: For n >= 3k, T(n,k) is composite. - Daniel Hoying, Jul 08 2020
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (1 <= n <= 150)
FORMULA
A004736 * A051731 as infinite lower triangular matrices: T(n, k) = Sum_{m=k..n} A004736(n, m)*A051731(m, k), T(n, k) = 0 if n < k.
T(n, k) = 0 if n < k, T(1, 1) = 1, and T(n, k) = T(n-1, k) + floor(n/k), for n >= 2. - Richard R. Forberg, Jan 17 2015
T(n,k) = k*floor(n/k)*floor((n+k)/k)/2 - floor(n/k)*(k-1-(n mod k)). - Bob Selcoe, Aug 21 2016
T(n,k) = k*A000217(b) + (b+1)*[(n +1)-(b + 1)*k] for 1 <= k <= floor[(n + 1) / 2] where b = floor[(n - k + 1) / k], T(n,k) = n-k+1 for floor[(n + 1) / 2] < k <= n and T(n,k) = 0 for k > n. - Henri Gonin, May 12 2020
T(n,k) = (-k/2)*floor(n/k)^2+(n-k/2+1)*floor(n/k). - Daniel Hoying, May 25 2020
From Daniel Hoying, Jul 06 2020: (Start)
T(m + 2*n - 1, m + n) = n for n > 0, m >= 0.
T(3*m + 3*ceiling((n-3)/6) + (n+1)/2, 2*m + 2*ceiling((n-3)/6) + 1) = n for n > 0, n odd, 0 <= m <= floor(n/3).
T(3*m + 3*ceiling(n/6) + n/2 - 1, 2*m + 2*ceiling(n/6)) = n for n > 0, n even, 0 <= m <= floor(n/3). (End)
EXAMPLE
The triangle T(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 3 1
3: 6 2 1
4: 10 4 2 1
5: 15 6 3 2 1
6: 21 9 5 3 2 1
7: 28 12 7 4 3 2 1
8: 36 16 9 6 4 3 2 1
9: 45 20 12 8 5 4 3 2 1
10: 55 25 15 10 7 5 4 3 2 1
... Reformatted. - Wolfdieter Lang, Feb 04 2015
T(10,3) = 15: 3*floor(10/3)*floor(13/3)/2 - floor(10/3)*(3-1 - 13 mod 3) = 3*3*4/2 - 3*(3-1-1) = 18-3 = 15. - Bob Selcoe, Aug 21 2016
MAPLE
T := proc(n, k) option remember: `if`(n = k, 1, T(n-1, k) + iquo(n, k)) end:
seq(seq(T(n, k), k=1..n), n=1..16); # Peter Luschny, May 26 2020
MATHEMATICA
nn = 12; f[w_] := Map[PadRight[#, nn] &, w]; MapIndexed[Take[#1, First@ #2] &, f@ Table[Reverse@ Range@ n, {n, nn}].f@ Table[Boole@ Divisible[n, #] & /@ Range@ n, {n, nn}]] // Flatten (* Michael De Vlieger, Aug 10 2016 *)
PROG
(PARI) t(n, k) = if (k>n, 0, if (n==1, 1, t(n-1, k) + n\k));
tabl(nn) = {m = matrix(nn, nn, n , k, t(n, k)); for (n=1, nn, for (k=1, n, print1(m[n, k], ", "); ); print(); ); } \\ Michel Marcus, Jan 18 2015
(PARI) trg(nn) = {ma = matrix(nn, nn, n, k, if (k<=n, n-k+1, 0)); mb = matrix(nn, nn, n, k, if (k<=n, !(n%k), 0)); ma*mb; } \\ Michel Marcus, Jan 20 2015
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Oct 31 2007
EXTENSIONS
Edited. Name clarified. Formulas rewritten. - Wolfdieter Lang, Feb 04 2015
Corrected and extended by Michael De Vlieger, Aug 10 2016
STATUS
approved