The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134546 Lower triangular matrix multiplication: A004736 * A051731. 4
 1, 3, 1, 6, 2, 1, 10, 4, 2, 1, 15, 6, 3, 2, 1, 21, 9, 5, 3, 2, 1, 28, 12, 7, 4, 3, 2, 1, 36, 16, 9, 6, 4, 3, 2, 1, 45, 20, 12, 8, 5, 4, 3, 2, 1, 55, 25, 15, 10, 7, 5, 4, 3, 2, 1, 66, 30, 18, 12, 9, 6, 5, 4, 3, 2, 1, 78, 36, 22, 15, 11, 8, 6, 5, 4, 3, 2, 1, 91, 42, 26, 18, 13, 10, 7, 6, 5, 4, 3, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row sums = A078567: (1, 4, 9, 17, 27, 41, 57, ...). T(n ,1) = A000217(n), n >= 1. From Bob Selcoe, Aug 08 2016: (Start) Columns are partial sums of k-repeating increasing positive integers:   Column 1 is {1+2+3+4+5+...} = A000217 (triangular numbers);   Column 2 is {1+1+2+2+3+3+4+4+...} = A002620 (quarter-squares);   Column 3 is {1+1+1+2+2+2+3+3+3+...} = A130518.   Columns k = 4..7 are A130519, A130520, A174709 and A174738, respectively. Row sums are A078567(n+1). T(n,k) is the number of positive multiples of k which can be expressed as i-j, {i=1..n; j=0..n-1}. So for example, T(5,2)=6 because there are 6 ways to express i-j {i<=5} as a multiple of 2: {5-3, 4-2, 3-1, 2-0, 5-1 and 4-0}. (End) Conjecture: For T(n,k) n >= k^(3/2), there is at least one prime in the interval [T(n-1,k+1), T(n,k)]. - Bob Selcoe, Aug 21 2016 Theorem: For n >= 3k, T(n,k) is composite. - Daniel Hoying, Jul 08 2020 LINKS Michael De Vlieger, Table of n, a(n) for n = 1..11325 (1 <= n <= 150) FORMULA A004736 * A051731 as infinite lower triangular matrices: T(n, k) = Sum_{m=k..n} A004736(n, m)*A051731(m, k), T(n, k) = 0 if n < k. T(n, k) = 0 if n < k, T(1, 1) = 1, and T(n, k) = T(n-1, k) + floor(n/k), for n >= 2. - Richard R. Forberg, Jan 17 2015 T(n,k) = k*floor(n/k)*floor((n+k)/k)/2 - floor(n/k)*(k-1-(n mod k)). - Bob Selcoe, Aug 21 2016 T(n,k) = k*A000217(b) + (b+1)*[(n +1)-(b + 1)*k] for 1 <= k <= floor[(n + 1) / 2] where b = floor[(n - k + 1) / k], T(n,k) = n-k+1 for floor[(n + 1) / 2] < k <= n and T(n,k) = 0 for k > n. - Henri Gonin, May 12 2020 T(n,k) = (-k/2)*floor(n/k)^2+(n-k/2+1)*floor(n/k). - Daniel Hoying, May 25 2020 From Daniel Hoying, Jul 06 2020: (Start) T(m + 2*n - 1, m + n) = n for n > 0, m >= 0. T(3*m + 3*ceiling((n-3)/6) + (n+1)/2, 2*m + 2*ceiling((n-3)/6) + 1) = n for n > 0, n odd, 0 <= m <= floor(n/3). T(3*m + 3*ceiling(n/6) + n/2 - 1, 2*m + 2*ceiling(n/6)) = n for n > 0, n even, 0 <= m <= floor(n/3). (End) EXAMPLE The triangle T(n, k) begins: n\k  1   2   3   4  5  6  7  8  9  10 ... 1:   1 2:   3   1 3:   6   2   1 4:  10   4   2   1 5:  15   6   3   2  1 6:  21   9   5   3  2  1 7:  28  12   7   4  3  2  1 8:  36  16   9   6  4  3  2  1 9:  45  20  12   8  5  4  3  2  1 10: 55  25  15  10  7  5  4  3  2   1 ... Reformatted. - Wolfdieter Lang, Feb 04 2015 T(10,3) = 15: 3*floor(10/3)*floor(13/3)/2 - floor(10/3)*(3-1 - 13 mod 3) = 3*3*4/2 - 3*(3-1-1) = 18-3 = 15. - Bob Selcoe, Aug 21 2016 MAPLE T := proc(n, k) option remember: `if`(n = k, 1, T(n-1, k) + iquo(n, k)) end: seq(seq(T(n, k), k=1..n), n=1..16); # Peter Luschny, May 26 2020 MATHEMATICA nn = 12; f[w_] := Map[PadRight[#, nn] &, w]; MapIndexed[Take[#1, First@ #2] &, f@ Table[Reverse@ Range@ n, {n, nn}].f@ Table[Boole@ Divisible[n, #] & /@ Range@ n, {n, nn}]] // Flatten (* Michael De Vlieger, Aug 10 2016 *) PROG (PARI) t(n, k) = if (k>n, 0, if (n==1, 1, t(n-1, k) + n\k)); tabl(nn) = {m = matrix(nn, nn, n , k, t(n, k)); for (n=1, nn, for (k=1, n, print1(m[n, k], ", "); ); print(); ); } \\ Michel Marcus, Jan 18 2015 (PARI) trg(nn) = {ma = matrix(nn, nn, n, k, if (k<=n, n-k+1, 0)); mb = matrix(nn, nn, n, k, if (k<=n, !(n%k), 0)); ma*mb; } \\ Michel Marcus, Jan 20 2015 CROSSREFS Cf. A004736, A051731, A078567. Cf. A000217, A002620, A078567, A130518, A130519, A130520, A174709, A174738. Sequence in context: A322041 A130302 A270103 * A152193 A055151 A181187 Adjacent sequences:  A134543 A134544 A134545 * A134547 A134548 A134549 KEYWORD nonn,easy,tabl AUTHOR Gary W. Adamson, Oct 31 2007 EXTENSIONS Edited. Name clarified. Formulas rewritten. - Wolfdieter Lang, Feb 04 2015 Corrected and extended by Michael De Vlieger, Aug 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 2 07:50 EDT 2022. Contains 354985 sequences. (Running on oeis4.)