login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133952
a(n) = the number of "isolated divisors" of n!. A positive divisor, k, of n is isolated if neither (k-1) nor (k+1) divides n.
2
1, 0, 1, 4, 10, 19, 43, 77, 137, 243, 497, 749, 1520, 2518, 3952, 5294, 10628, 14564, 29199, 40855, 60605, 95786, 191700, 242580, 339732, 531896, 677048, 916946, 1834106, 2332346, 4664982, 5528982, 7863685, 12164443, 16422235, 19594843
OFFSET
1,4
LINKS
FORMULA
a(n) = A027423(n) - A133951(n) = A132881(A000142(n)).
MAPLE
A133952 := proc(n) local divs, k, i, a ; divs := sort(convert(numtheory[divisors](n!), list)) ; a := 0 ; for i from 1 to nops(divs) do k := op(i, divs) ; if not k-1 in divs and not k+1 in divs then a := a+1 ; fi ; od: RETURN(a) ; end: for n from 1 do printf("%d, ", A133952(n)) ; od: # R. J. Mathar, Oct 19 2007
CROSSREFS
Sequence in context: A097116 A155380 A155445 * A155348 A155269 A155322
KEYWORD
nonn
AUTHOR
Leroy Quet, Sep 30 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Oct 19 2007
a(26)-a(35) from Ray Chandler, May 28 2008
a(36)-a(50) from Ray Chandler, Jun 20 2008
STATUS
approved