Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 13 2015 20:49:33
%S 1,0,1,4,10,19,43,77,137,243,497,749,1520,2518,3952,5294,10628,14564,
%T 29199,40855,60605,95786,191700,242580,339732,531896,677048,916946,
%U 1834106,2332346,4664982,5528982,7863685,12164443,16422235,19594843
%N a(n) = the number of "isolated divisors" of n!. A positive divisor, k, of n is isolated if neither (k-1) nor (k+1) divides n.
%H Ray Chandler, <a href="/A133952/b133952.txt">Table of n, a(n) for n=1..50</a>
%F a(n) = A027423(n) - A133951(n) = A132881(A000142(n)).
%p A133952 := proc(n) local divs,k,i,a ; divs := sort(convert(numtheory[divisors](n!), list)) ; a := 0 ; for i from 1 to nops(divs) do k := op(i,divs) ; if not k-1 in divs and not k+1 in divs then a := a+1 ; fi ; od: RETURN(a) ; end: for n from 1 do printf("%d,",A133952(n)) ; od: # _R. J. Mathar_, Oct 19 2007
%Y Cf. A133951, A027423.
%K nonn
%O 1,4
%A _Leroy Quet_, Sep 30 2007
%E Corrected and extended by _R. J. Mathar_, Oct 19 2007
%E a(26)-a(35) from _Ray Chandler_, May 28 2008
%E a(36)-a(50) from _Ray Chandler_, Jun 20 2008