login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133754
a(n) = n^5 - n^3.
4
0, 0, 24, 216, 960, 3000, 7560, 16464, 32256, 58320, 99000, 159720, 247104, 369096, 535080, 756000, 1044480, 1414944, 1883736, 2469240, 3192000, 4074840, 5142984, 6424176, 7948800, 9750000, 11863800, 14329224, 17188416, 20486760, 24273000, 28599360, 33521664
OFFSET
0,3
FORMULA
a(n) = 12*n*(2*binomial(n+2,4)- binomial(n+1,3)). - Gary Detlefs, Mar 25 2012
Sum_{n>=2} 1/a(n) = 5/4 - zeta(3). - Daniel Suteu, Feb 06 2017
From G. C. Greubel, Sep 02 2019: (Start)
G.f.: 24*x^2*(1 + 3*x + x^2)/(1-x)^6.
E.g.f.: x^2*(12 + 24*x + 10*x^2 + x^3)*exp(x). (End)
Sum_{n>=2} (-1)^n/a(n) = 3*zeta(3)/4 + 2*log(2) - 9/4. - Amiram Eldar, Jan 09 2021
MAPLE
seq(n^5 - n^3, n=0..50); # G. C. Greubel, Sep 02 2019
MATHEMATICA
Table[n^5-n^3, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
PROG
(Magma) [n^5-n^3: n in [0..50]]; // Vincenzo Librandi, Feb 20 2012
(PARI) a(n)=n^5-n^3 \\ Charles R Greathouse IV, Feb 20 2012
(Sage) [n^5 - n^3 for n in (0..50)] # G. C. Greubel, Sep 02 2019
(GAP) List([0..50], n-> n^5 - n^3); # G. C. Greubel, Sep 02 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Rolf Pleisch, Mar 16 2008
STATUS
approved