OFFSET
0,2
COMMENTS
Sequence occurs in the binomial identity Sum_{k = 0..n} a(k)* binomial(n,k)/binomial(n+k,k) = n^3. - Peter Bala, Feb 12 2019
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = 2*A168178(n).
G.f.: 2*x*(1 + 14*x + 30*x^2 + 14*x^3 + x^4)/(1-x)^6. - Vincenzo Librandi, Feb 05 2013
E.g.f.: x*(2 + 18*x + 26*x^2 + 10*x^3 + x^4)*exp(x). - G. C. Greubel, Sep 02 2019
MAPLE
seq(n^5 + n^3, n=0..30); # G. C. Greubel, Sep 02 2019
MATHEMATICA
Table[n^5 + n^3, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
CoefficientList[Series[2x(1+14x+30x^2+14x^3+x^4)/(1-x)^6, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 05 2013 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 2, 40, 270, 1088, 3250}, 30] (* Harvey P. Dale, Jan 18 2015 *)
PROG
(PARI) a(n)=n^5+n^3 \\ Charles R Greathouse IV, Dec 28 2011
(Magma) [n^5 + n^3: n in [0..30]] // Vincenzo Librandi, Feb 03 2012
(Sage) [n^5 + n^3 for n in (0..30)] # G. C. Greubel, Sep 02 2019
(GAP) List([0..30], n-> n^5 + n^3); # G. C. Greubel, Sep 02 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 01 2009
STATUS
approved