login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155977
a(n) = n^5 + n^3.
6
0, 2, 40, 270, 1088, 3250, 7992, 17150, 33280, 59778, 101000, 162382, 250560, 373490, 540568, 762750, 1052672, 1424770, 1895400, 2482958, 3208000, 4093362, 5164280, 6448510, 7976448, 9781250, 11898952, 14368590, 17232320, 20535538
OFFSET
0,2
COMMENTS
Sequence occurs in the binomial identity Sum_{k = 0..n} a(k)* binomial(n,k)/binomial(n+k,k) = n^3. - Peter Bala, Feb 12 2019
FORMULA
a(n) = 2*A168178(n).
a(n) = A000578(n)*A002522(n). - Vincenzo Librandi, Feb 03 2012
G.f.: 2*x*(1 + 14*x + 30*x^2 + 14*x^3 + x^4)/(1-x)^6. - Vincenzo Librandi, Feb 05 2013
E.g.f.: x*(2 + 18*x + 26*x^2 + 10*x^3 + x^4)*exp(x). - G. C. Greubel, Sep 02 2019
MAPLE
seq(n^5 + n^3, n=0..30); # G. C. Greubel, Sep 02 2019
MATHEMATICA
Table[n^5 + n^3, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
CoefficientList[Series[2x(1+14x+30x^2+14x^3+x^4)/(1-x)^6, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 05 2013 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 2, 40, 270, 1088, 3250}, 30] (* Harvey P. Dale, Jan 18 2015 *)
PROG
(PARI) a(n)=n^5+n^3 \\ Charles R Greathouse IV, Dec 28 2011
(Magma) [n^5 + n^3: n in [0..30]] // Vincenzo Librandi, Feb 03 2012
(Sage) [n^5 + n^3 for n in (0..30)] # G. C. Greubel, Sep 02 2019
(GAP) List([0..30], n-> n^5 + n^3); # G. C. Greubel, Sep 02 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 01 2009
STATUS
approved