Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 08 2022 08:45:41
%S 0,2,40,270,1088,3250,7992,17150,33280,59778,101000,162382,250560,
%T 373490,540568,762750,1052672,1424770,1895400,2482958,3208000,4093362,
%U 5164280,6448510,7976448,9781250,11898952,14368590,17232320,20535538
%N a(n) = n^5 + n^3.
%C Sequence occurs in the binomial identity Sum_{k = 0..n} a(k)* binomial(n,k)/binomial(n+k,k) = n^3. - _Peter Bala_, Feb 12 2019
%H Vincenzo Librandi, <a href="/A155977/b155977.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F a(n) = 2*A168178(n).
%F a(n) = A000578(n)*A002522(n). - _Vincenzo Librandi_, Feb 03 2012
%F G.f.: 2*x*(1 + 14*x + 30*x^2 + 14*x^3 + x^4)/(1-x)^6. - _Vincenzo Librandi_, Feb 05 2013
%F E.g.f.: x*(2 + 18*x + 26*x^2 + 10*x^3 + x^4)*exp(x). - _G. C. Greubel_, Sep 02 2019
%p seq(n^5 + n^3, n=0..30); # _G. C. Greubel_, Sep 02 2019
%t Table[n^5 + n^3, {n,0,30}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 18 2011 *)
%t CoefficientList[Series[2x(1+14x+30x^2+14x^3+x^4)/(1-x)^6, {x,0,30}], x] (* _Vincenzo Librandi_, Feb 05 2013 *)
%t LinearRecurrence[{6,-15,20,-15,6,-1}, {0,2,40,270,1088,3250}, 30] (* _Harvey P. Dale_, Jan 18 2015 *)
%o (PARI) a(n)=n^5+n^3 \\ _Charles R Greathouse IV_, Dec 28 2011
%o (Magma) [n^5 + n^3: n in [0..30]] // _Vincenzo Librandi_, Feb 03 2012
%o (Sage) [n^5 + n^3 for n in (0..30)] # _G. C. Greubel_, Sep 02 2019
%o (GAP) List([0..30], n-> n^5 + n^3); # _G. C. Greubel_, Sep 02 2019
%Y Cf. A000578, A002522, A168178.
%K nonn,easy
%O 0,2
%A _Vincenzo Librandi_, Feb 01 2009