login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232474
4-Fubini numbers.
5
24, 216, 2184, 24696, 310344, 4304376, 65444424, 1083832056, 19437971784, 375544415736, 7779464328264, 172062025581816, 4047849158698824, 100946105980181496, 2660400563437957704, 73890563849015945976, 2157336929022064219464, 66059202473570840113656, 2116993226046938197020744
OFFSET
4,1
LINKS
Andrei Z. Broder, The r-Stirling numbers, Discrete Math. 49, 241-259 (1984).
I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013.
Benjamin Schreyer, Rigged Horse Numbers and their Modular Periodicity, arXiv:2409.03799 [math.CO], 2024. See p. 12.
FORMULA
From Peter Bala, Dec 16 2020: (Start)
a(n+4) = Sum_{k = 0..n} (k+4)!/k!*( Sum{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+4)^n ).
a(n+4) = Sum_{k = 0..n} 4^(n-k)*binomial(n,k)*( Sum_{i = 0..k} Stirling2(k,i)*(i+4)! ).
E.g.f. with offset 0: 24*exp(4*z)/(2 - exp(z))^5 = 24 + 216*z + 2184*z^2/2! + 24696*z^3/3! + .... (End)
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Dec 17 2020
MAPLE
# r-Stirling numbers of second kind (e.g. A008277, A143494, A143495):
T := (n, k, r) -> (1/(k-r)!)*add ((-1)^(k+i+r)*binomial(k-r, i)*(i+r)^(n-r), i = 0..k-r):
# r-Bell numbers (e.g. A000110, A005493, A005494):
B := (n, r) -> add(T(n, k, r), k=r..n);
SB := r -> [seq(B(n, r), n=r..30)];
SB(2);
# r-Fubini numbers (e.g. A000670, A232472, A232473, A232474):
F := (n, r) -> add((k)!*T(n, k, r), k=r..n);
SF := r -> [seq(F(n, r), n=r..30)];
SF(4);
MATHEMATICA
Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, 4], {n, 4, 22}] (* Jean-François Alcover, Mar 30 2016 *)
PROG
(Magma) r:=4; r_Fubini:=func<n, r | &+[Factorial(k)*&+[(-1)^(k+h+r)*(h+r)^(n-r)/(Factorial(h)*Factorial(k-h-r)): h in [0..k-r]]: k in [r..n]]>;
[r_Fubini(n, r): n in [r..22]]; // Bruno Berselli, Mar 30 2016
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 27 2013
STATUS
approved