login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^5 - n^3.
4

%I #45 Sep 08 2022 08:45:32

%S 0,0,24,216,960,3000,7560,16464,32256,58320,99000,159720,247104,

%T 369096,535080,756000,1044480,1414944,1883736,2469240,3192000,4074840,

%U 5142984,6424176,7948800,9750000,11863800,14329224,17188416,20486760,24273000,28599360,33521664

%N a(n) = n^5 - n^3.

%H Vincenzo Librandi, <a href="/A133754/b133754.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F a(n) = 12*n*(2*binomial(n+2,4)- binomial(n+1,3)). - _Gary Detlefs_, Mar 25 2012

%F Sum_{n>=2} 1/a(n) = 5/4 - zeta(3). - _Daniel Suteu_, Feb 06 2017

%F From _G. C. Greubel_, Sep 02 2019: (Start)

%F G.f.: 24*x^2*(1 + 3*x + x^2)/(1-x)^6.

%F E.g.f.: x^2*(12 + 24*x + 10*x^2 + x^3)*exp(x). (End)

%F Sum_{n>=2} (-1)^n/a(n) = 3*zeta(3)/4 + 2*log(2) - 9/4. - _Amiram Eldar_, Jan 09 2021

%p seq(n^5 - n^3, n=0..50); # _G. C. Greubel_, Sep 02 2019

%t Table[n^5-n^3, {n,0,50}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 18 2011 *)

%o (Magma) [n^5-n^3: n in [0..50]]; // _Vincenzo Librandi_, Feb 20 2012

%o (PARI) a(n)=n^5-n^3 \\ _Charles R Greathouse IV_, Feb 20 2012

%o (Sage) [n^5 - n^3 for n in (0..50)] # _G. C. Greubel_, Sep 02 2019

%o (GAP) List([0..50], n-> n^5 - n^3); # _G. C. Greubel_, Sep 02 2019

%Y Cf. A000578, A000584, A155977.

%K easy,nonn

%O 0,3

%A _Rolf Pleisch_, Mar 16 2008