login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133205
Fully multiplicative with a(p) = p*(p+1)/2 for prime p.
2
1, 3, 6, 9, 15, 18, 28, 27, 36, 45, 66, 54, 91, 84, 90, 81, 153, 108, 190, 135, 168, 198, 276, 162, 225, 273, 216, 252, 435, 270, 496, 243, 396, 459, 420, 324, 703, 570, 546, 405, 861, 504, 946, 594, 540, 828, 1128, 486, 784, 675, 918, 819, 1431, 648, 990, 756
OFFSET
1,2
COMMENTS
There are analogs with the triangular numbers replaced by some other sequence, but this was chosen because of the parity coincidences of A034953.
LINKS
FORMULA
a((p_1)^e_1)*(p_2)^e_2)*...*(p_k)^e_k)) = (T((p_1))^e_1)*T((p_2))^e_2)*...*T((p_k))^e_k, where T(i) = A000217(i). a(p_i) = A034953(i).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 - 2/(p*(p+1))^(-1) = 2.12007865309570462566... . - Amiram Eldar, Dec 24 2022
Dirichlet g.f.: Product_{p prime} (1 + (p^2 + p) / (2*p^s - p^2 - p)). - Vaclav Kotesovec, Apr 05 2023
MATHEMATICA
f[p_, e_] := (p*(p + 1)/2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Dec 24 2022 *)
PROG
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], binomial(f[i, 1]+1, 2)^f[i, 2]) /* Charles R Greathouse IV, Sep 09 2010 */
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1 + (p^2 + p) / (2/X - p^2 - p))[n], ", ")) \\ Vaclav Kotesovec, Apr 05 2023
KEYWORD
mult,easy,nonn
AUTHOR
Jonathan Vos Post, Oct 10 2007
STATUS
approved