login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132102 Number of distinct Tsuro tiles which are n-gonal in shape and have 2 points per side. 3
1, 1, 3, 7, 35, 193, 1799, 19311, 254143, 3828921, 65486307, 1249937335, 26353147811, 608142583137, 15247011443103, 412685556939751, 11993674252049647, 372509404162520641, 12313505313357313047, 431620764875678503143, 15991549339008732109899 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Turning over is not allowed.

See A132100 for definition and comments.

Even and odd terms can be computed with the help of Burnside Lemma and recursive sequences. - Lionel RAVEL, Sep 18 2013

LINKS

Table of n, a(n) for n=0..20.

FORMULA

a_n = 1/n sum_{n=pq} phi(p)*alpha(p,q), phi = Euler's totient function,

alpha(p,q) = sum_{0 <= j <= q} p^j binomial(2q, 2j) (2j-1)!! if p even,

= p^q (2q-1)!! if p odd. (cf. also A132100) - Laurent Tournier, Jul 09 2014

MAPLE

with(numtheory): a:=(p, q)->piecewise(p mod 2 = 1, p^q*doublefactorial(2*q - 1), sum(p^j*binomial(2*q, 2*j)*doublefactorial(2*j - 1), j = 0 .. q));

A132102 := n->add(phi(p)*a(p, n/p), p in divisors(n))/n;

[seq(A132102(n), n=1..20)]; # Laurent Tournier, Jul 09 2014

CROSSREFS

Cf. A132100-A132105, A007769, A001147, A054499.

Sequence in context: A053530 A215575 A266049 * A081555 A301341 A063042

Adjacent sequences:  A132099 A132100 A132101 * A132103 A132104 A132105

KEYWORD

nonn

AUTHOR

Keith F. Lynch, Oct 31 2007

EXTENSIONS

More terms from Lionel RAVEL, Sep 18 2013

a(9) and a(10) corrected, and addition of more terms using formula given above by Laurent Tournier, Jul 09 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 09:18 EST 2018. Contains 317433 sequences. (Running on oeis4.)