login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131764
Inverse Euler transform of central binomial coefficients A000984.
1
1, 2, 3, 10, 30, 102, 335, 1170, 4080, 14560, 52377, 190650, 698870, 2581110, 9586395, 35791358, 134215680, 505290270, 1908866960, 7233629130, 27487764474, 104715392730, 399822314775, 1529755308210, 5864061663920, 22517998136832, 86607683851185, 333599972392960, 1286742745883790, 4969489243995030, 19215358392200893, 74382032555280450, 288230376084602880
OFFSET
0,2
COMMENTS
This is the sequence of dimensions of a free Lie algebra on some specific set of generators.
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) = (1/n) * Sum_{d|n} moebius(n/d)*2^(2*d-1) for n > 0, a(0) = 1.
a(n) ~ 2^(2*n-1) / n. - Vaclav Kotesovec, Oct 09 2019
EXAMPLE
2*x + 3*x^2 + 10*x^3 + 30*x^4 + 102*x^5 + 335*x^6 + 1170*x^7 + 4080*x^8 + ...
(1-x)^(-2)*(1-x^2)^(-3)*(1-x^3)^(-10)*(1-x^4)^(-30)*(1-x^5)^(-102) = 1 + 2*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 + ... .
MAPLE
# The function EulerInvTransform is defined in A358451.
a := EulerInvTransform(n -> binomial(2*n, n)):
seq(a(n), n = 0..32); # Peter Luschny, Nov 21 2022
MATHEMATICA
a[n_] := (1/n)*DivisorSum[n, MoebiusMu[n/#]*2^(2*#-1)&]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Feb 20 2017 *)
PROG
(MuPAD) a(n):=proc(n) begin 1/n*_plus(moebius(n/d)*2^(2*d-1)$d in divisors(n)) end;
(PARI) a(n)=sumdiv(n, d, 1/n*moebius(n/d)*2^(d*2-1)); /* Joerg Arndt, Jul 06 2011 */
(PARI) {a(n) = local(A); if( n<1, 0, A = sqrt(1 - 4*x + x * O(x^n)); for( k=1, n-1, A *= (1 - x^k + x * O(x^n))^ polcoeff( A, k)); -polcoeff( A, n))} /* Michael Somos, Apr 01 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
F. Chapoton, Oct 04 2007
EXTENSIONS
More explicit definition from Michael Somos, Apr 01 2012. - N. J. A. Sloane, Feb 20 2017
STATUS
approved