OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: (1-sqrt(1-4*x))/(sqrt(1-4*x)*x-x+2)*((6*x+sqrt(1-4*x)-1)/(4*x+sqrt(1-4*x)-1)).
Conjecture: n*(7*n^2-17*n-2) *a(n) +(-35*n^3+99*n^2+20*n-120) *a(n-1) +2* (2*n-5) *(7*n^2-3*n-12)*a(n-2) +n*(7*n^2-17*n-2) *a(n-3) +2*-(2*n-5) *(7*n^2-3*n-12) *a(n-4)=0. - R. J. Mathar, Mar 22 2016
a(n) ~ 2^(2*n+1) / (7*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 22 2016
MATHEMATICA
CoefficientList[Series[(1 - Sqrt[1 - 4*x])/(Sqrt[1 - 4*x]*x - x + 2)* ((6*x + Sqrt[1 - 4*x] - 1)/(4*x + Sqrt[1 - 4*x] - 1)), {x, 0, 50}], x] (* G. C. Greubel, Jun 04 2017 *)
PROG
(Maxima)
taylor((1-sqrt(1-4*x))/(sqrt(1-4*x)*x-x+2)*((6*x+sqrt(1-4*x)-1)/(4*x+sqrt(1-4*x)-1)), x, 0, 15);
a(n):=(n+1)*sum((binomial(2*n-3*k-2, n-k-1))/(n-k), k, 0, (n-1)/2);
(PARI) x='x+O('x^100); concat(0, Vec((1-sqrt(1-4*x))/(sqrt(1-4*x)*x-x+2)*((6*x+sqrt(1-4*x)-1)/(4*x+sqrt(1-4*x)-1)))) \\ Altug Alkan, Mar 25 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 22 2016
STATUS
approved