login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270363
a(n) = (n+1)*Sum_{k=0..(n-1)/2}((binomial(2*n-3*k-2,n-k-1))/(n-k)).
1
0, 2, 3, 10, 30, 101, 350, 1250, 4548, 16782, 62579, 235273, 890331, 3387204, 12943353, 49643762, 191010623, 736946570, 2850013623, 11044973890, 42882986660, 166770990377, 649526893537, 2533096497017, 9890766366030, 38662031939117
OFFSET
0,2
LINKS
FORMULA
G.f.: (1-sqrt(1-4*x))/(sqrt(1-4*x)*x-x+2)*((6*x+sqrt(1-4*x)-1)/(4*x+sqrt(1-4*x)-1)).
Conjecture: n*(7*n^2-17*n-2) *a(n) +(-35*n^3+99*n^2+20*n-120) *a(n-1) +2* (2*n-5) *(7*n^2-3*n-12)*a(n-2) +n*(7*n^2-17*n-2) *a(n-3) +2*-(2*n-5) *(7*n^2-3*n-12) *a(n-4)=0. - R. J. Mathar, Mar 22 2016
a(n) ~ 2^(2*n+1) / (7*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 22 2016
MATHEMATICA
CoefficientList[Series[(1 - Sqrt[1 - 4*x])/(Sqrt[1 - 4*x]*x - x + 2)* ((6*x + Sqrt[1 - 4*x] - 1)/(4*x + Sqrt[1 - 4*x] - 1)), {x, 0, 50}], x] (* G. C. Greubel, Jun 04 2017 *)
PROG
(Maxima)
taylor((1-sqrt(1-4*x))/(sqrt(1-4*x)*x-x+2)*((6*x+sqrt(1-4*x)-1)/(4*x+sqrt(1-4*x)-1)), x, 0, 15);
a(n):=(n+1)*sum((binomial(2*n-3*k-2, n-k-1))/(n-k), k, 0, (n-1)/2);
(PARI) x='x+O('x^100); concat(0, Vec((1-sqrt(1-4*x))/(sqrt(1-4*x)*x-x+2)*((6*x+sqrt(1-4*x)-1)/(4*x+sqrt(1-4*x)-1)))) \\ Altug Alkan, Mar 25 2016
CROSSREFS
Sequence in context: A301971 A319671 A338593 * A131764 A066706 A353052
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 22 2016
STATUS
approved