OFFSET
1,2
COMMENTS
We solve 0.5*(3*p^2+3*p+2)=0.5*(5*r^2+5*r+2), i.e., 3*(2*p+1)^2=5*(2*r+1)^2-2.
The Diophantine equation 3*X^2=5*Y^2-2is such that : X is given by A057080 which satisfies the new formula a(n+1)=4*a(n)+(15*a(n)^2+10)^0.5, Y is given by A070997 which satisfies the new formula a(n+1)=4*a(n)+(15*a(n)^2-6)^0.5 while r is given by the sequence 0,3,27,216,1704,... which satisfies a(n+2)=8*a(n+1)-a(n)+3 and a(n+1)=4*a(n)+1.5+0.5*(60*a(n)^2+60*a(n)+9)^0.5, p is given by the sequence 0,4,35,279,2200,... which satisfies a(n+2)=8*a(n+1)-a(n)+3 and a(n+1)=4*a(n)+1.5+0.5*sqrt(60*a(n)^2+60*a(n)+25).
LINKS
Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419-427.
Index entries for linear recurrences with constant coefficients, signature (63,-63,1).
FORMULA
a(n+2) = 62*a(n+1) - a(n) - 30, a(n+1) = 31*a(n) - 15 + sqrt(960*a(n)^2 - 960*a(n)+225).
G.f.: f(z)=a(1)*z+a(2)*z^2+...=((z*(1-32*z+z^2))/((1-z)*(1-62*z+z^2)).
MAPLE
A131751 := proc(n) coeftayl(x*(1-32*x+x^2)/(1-x)/(1-62*x+x^2), x=0, n) ; end: seq(A131751(n), n=1..20) ; # R. J. Mathar, Oct 24 2007
MATHEMATICA
LinearRecurrence[{63, -63, 1}, {1, 31, 1891}, 20] (* Harvey P. Dale, Oct 01 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Sep 20 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Oct 24 2007
STATUS
approved