login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131751
Numbers that are both centered triangular and centered pentagonal.
2
1, 31, 1891, 117181, 7263301, 450207451, 27905598631, 1729696907641, 107213302675081, 6645495068947351, 411913480972060651, 25531990325198812981, 1582571486681354344141, 98093900183918770523731
OFFSET
1,2
COMMENTS
We solve 0.5*(3*p^2+3*p+2)=0.5*(5*r^2+5*r+2), i.e., 3*(2*p+1)^2=5*(2*r+1)^2-2.
The Diophantine equation 3*X^2=5*Y^2-2is such that : X is given by A057080 which satisfies the new formula a(n+1)=4*a(n)+(15*a(n)^2+10)^0.5, Y is given by A070997 which satisfies the new formula a(n+1)=4*a(n)+(15*a(n)^2-6)^0.5 while r is given by the sequence 0,3,27,216,1704,... which satisfies a(n+2)=8*a(n+1)-a(n)+3 and a(n+1)=4*a(n)+1.5+0.5*(60*a(n)^2+60*a(n)+9)^0.5, p is given by the sequence 0,4,35,279,2200,... which satisfies a(n+2)=8*a(n+1)-a(n)+3 and a(n+1)=4*a(n)+1.5+0.5*sqrt(60*a(n)^2+60*a(n)+25).
FORMULA
a(n+2) = 62*a(n+1) - a(n) - 30, a(n+1) = 31*a(n) - 15 + sqrt(960*a(n)^2 - 960*a(n)+225).
G.f.: f(z)=a(1)*z+a(2)*z^2+...=((z*(1-32*z+z^2))/((1-z)*(1-62*z+z^2)).
A005891 INTERSECT A005448. - R. J. Mathar, Oct 24 2007
MAPLE
A131751 := proc(n) coeftayl(x*(1-32*x+x^2)/(1-x)/(1-62*x+x^2), x=0, n) ; end: seq(A131751(n), n=1..20) ; # R. J. Mathar, Oct 24 2007
MATHEMATICA
LinearRecurrence[{63, -63, 1}, {1, 31, 1891}, 20] (* Harvey P. Dale, Oct 01 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Sep 20 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Oct 24 2007
STATUS
approved