login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are both centered triangular and centered pentagonal.
2

%I #24 Dec 16 2023 18:00:47

%S 1,31,1891,117181,7263301,450207451,27905598631,1729696907641,

%T 107213302675081,6645495068947351,411913480972060651,

%U 25531990325198812981,1582571486681354344141,98093900183918770523731

%N Numbers that are both centered triangular and centered pentagonal.

%C We solve 0.5*(3*p^2+3*p+2)=0.5*(5*r^2+5*r+2), i.e., 3*(2*p+1)^2=5*(2*r+1)^2-2.

%C The Diophantine equation 3*X^2=5*Y^2-2is such that : X is given by A057080 which satisfies the new formula a(n+1)=4*a(n)+(15*a(n)^2+10)^0.5, Y is given by A070997 which satisfies the new formula a(n+1)=4*a(n)+(15*a(n)^2-6)^0.5 while r is given by the sequence 0,3,27,216,1704,... which satisfies a(n+2)=8*a(n+1)-a(n)+3 and a(n+1)=4*a(n)+1.5+0.5*(60*a(n)^2+60*a(n)+9)^0.5, p is given by the sequence 0,4,35,279,2200,... which satisfies a(n+2)=8*a(n+1)-a(n)+3 and a(n+1)=4*a(n)+1.5+0.5*sqrt(60*a(n)^2+60*a(n)+25).

%H Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2016volume16/FG2016volume16.pdf#page=423">Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences</a>, Forum Geometricorum, Volume 16 (2016) 419-427.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (63,-63,1).

%F a(n+2) = 62*a(n+1) - a(n) - 30, a(n+1) = 31*a(n) - 15 + sqrt(960*a(n)^2 - 960*a(n)+225).

%F G.f.: f(z)=a(1)*z+a(2)*z^2+...=((z*(1-32*z+z^2))/((1-z)*(1-62*z+z^2)).

%F A005891 INTERSECT A005448. - _R. J. Mathar_, Oct 24 2007

%p A131751 := proc(n) coeftayl(x*(1-32*x+x^2)/(1-x)/(1-62*x+x^2),x=0,n) ; end: seq(A131751(n),n=1..20) ; # _R. J. Mathar_, Oct 24 2007

%t LinearRecurrence[{63,-63,1},{1,31,1891},20] (* _Harvey P. Dale_, Oct 01 2017 *)

%Y Cf. A050807 A070997.

%K nonn,easy

%O 1,2

%A _Richard Choulet_, Sep 20 2007

%E Corrected and extended by _R. J. Mathar_, Oct 24 2007