login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130889 a(n) = smallest k such that A000959(n+1) = A000959(n) + (A000959(n) mod k), or 0 if no such k exists. 6
0, 0, 5, 5, 11, 9, 17, 19, 29, 29, 31, 37, 47, 13, 59, 5, 5, 71, 71, 71, 9, 29, 31, 9, 107, 103, 5, 5, 131, 43, 131, 11, 5, 157, 167, 51, 5, 191, 7, 197, 199, 29, 5, 43, 227, 233, 233, 223, 257, 15, 9, 263, 281, 281, 281, 97, 13, 59, 317, 7, 17, 17, 47, 11, 353, 71, 349, 379, 389 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
a(n) is the "weight" of lucky numbers.
The decomposition of lucky numbers into weight * level + gap is A000959(n) = a(n) * A184828(n) + A031883(n) if a(n) > 0.
LINKS
EXAMPLE
For n = 1 we have A000959(n) = 1, A000959(n+1) = 3; there is no k such that 3 - 1 = 2 = (1 mod k), hence a(1) = 0.
For n = 3 we have A000959(n) = 7, A000959(n+1) = 9; 5 is the smallest k such that 9 - 7 = 2 = (7 mod k), hence a(3) = 5.
For n = 24 we have A000959(n) = 105, A000959(n+1) = 111; 9 is the smallest k such that 111 - 105 = 6 = (105 mod k), hence a(24) = 9.
CROSSREFS
Sequence in context: A247871 A204902 A151728 * A184827 A058610 A143427
KEYWORD
nonn
AUTHOR
Rémi Eismann, Aug 21 2007 - Jan 23 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 11:50 EST 2023. Contains 367710 sequences. (Running on oeis4.)