login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130887
Inverse Moebius transform of the Mersenne numbers: a(n) = Sum_{d|n} (2^d - 1).
3
1, 4, 8, 19, 32, 74, 128, 274, 519, 1058, 2048, 4184, 8192, 16514, 32806, 65809, 131072, 262728, 524288, 1049648, 2097286, 4196354, 8388608, 16781654, 33554463, 67117058, 134218246, 268451984, 536870912, 1073775718, 2147483648, 4295033104, 8589936646
OFFSET
1,2
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..500
FORMULA
a(n) = Sum_{d|n} Sum_{k=1..d} C(d,k) = Sum_{d|n} (-1 + 2^d) = Sum_{d|n} 2^d - tau(n) = A055895(n) - A000010(n). - Enrique Pérez Herrero, Apr 14 2012
G.f.: Sum_{k>=1} (2^k - 1)*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 28 2017
a(n) = Sum_{i=1..n} 2^(i-1)*A135539(n,i). - Ridouane Oudra, Sep 19 2022
EXAMPLE
G.f. = x + 4*x^2 + 8*x^3 + 19*x^4 + 32*x^5 + 74*x^6 + 128*x^7 + 274*x^8 + ...
MATHEMATICA
A130887[n_]:=DivisorSum[n, Plus@@Table[Binomial[#, i], {i, 1, #}]&]; Array[A130887, 20] (* Enrique Pérez Herrero, Apr 14 2012 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, 2^# - 1 &]]; (* Michael Somos, Jan 28 2017 *)
PROG
(Haskell)
a130887 = sum . map a000225 . a027750_row
-- Reinhard Zumkeller, Feb 17 2013
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, 2^d-1))}; /* Michael Somos, Jan 28 2017 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jun 07 2007
EXTENSIONS
New name from Enrique Pérez Herrero, Apr 14 2012
Name corrected by Michel Marcus, Sep 19 2022
STATUS
approved