login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058610 McKay-Thompson series of class 28a for Monster. 1
1, 1, 5, 5, 11, 10, 26, 25, 46, 55, 91, 101, 156, 181, 272, 316, 457, 531, 747, 862, 1188, 1387, 1858, 2177, 2864, 3348, 4334, 5078, 6485, 7589, 9605, 11215, 14026, 16365, 20308, 23656, 29094, 33876, 41359, 48068, 58266, 67645, 81537, 94476, 113269, 131052, 156311, 180518 (list; graph; refs; listen; history; text; internal format)
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of A - q/A, where A = q^(1/2)*(eta(q^2)*eta(q^7)/(eta(q)* eta(q^14)))^2, in powers of q. - G. C. Greubel, Jun 22 2018
a(n) ~ exp(2*Pi*sqrt(n/7)) / (2 * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018
EXAMPLE
T28a = 1/q + q + 5*q^3 + 5*q^5 + 11*q^7 + 10*q^9 + 26*q^11 + 25*q^13 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; A := q^(1/2)*(eta[q^2]*eta[q^7]/(eta[q]*eta[q^14]))^2; a:= CoefficientList[Series[(A - q/A), {q, 0, 100}], q]; Table[a[[n]], {n, 1, 70}] (* G. C. Greubel, Jun 22 2018 *)
PROG
(PARI) q='q+O('q^50); A = (eta(q^2)*eta(q^7)/(eta(q)*eta(q^14)))^2; Vec(A - q/A) \\ G. C. Greubel, Jun 22 2018
CROSSREFS
Sequence in context: A151728 A130889 A184827 * A143427 A287996 A239355
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
Terms a(12) onward added by G. C. Greubel, Jun 22 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 21:07 EST 2023. Contains 367594 sequences. (Running on oeis4.)