login
A058607
a(n) = (1 + 1/2 + 1/3 + ... + 1/n)*(2n-1)!/(n-1)!.
1
1, 9, 110, 1750, 34524, 814968, 22424688, 705173040, 24956062560, 981852505920, 42517741069440, 2009786716304640, 102980287835712000, 5685838994441088000, 336540101841974016000, 21258495023757610752000, 1427473447879197261312000, 101537097118783918986240000, 7626891980577579870504960000
OFFSET
1,2
LINKS
Hongwei Chen, Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.5, p. 3.
FORMULA
E.g.f.: log((1 + 1/sqrt(1-4*x))/2)/sqrt(1-4*x).
a(n) = n!*Sum_{k=1..n} (binomial(2*n,n-k)/k). - Vladimir Kruchinin, Mar 31 2016
a(n) = 2*(2*n-1)*a(n-1)+binomial(2*n-1,n)*(n-1)!, a(1)=1. - Vladimir Kruchinin, Jun 11 2016
a(n) = hypergeom([1,1,1-n],[2,n+2],-1)*n*(2*n)!/(n+1)!. - Peter Luschny, Jun 11 2016
MAPLE
A058607 := n -> hypergeom([1, 1, 1-n], [2, n+2], -1)*n*(2*n)!/(n+1)!:
seq(simplify(A058607(n)), n=1..19); # Peter Luschny, Jun 11 2016
MATHEMATICA
Rest[CoefficientList[Series[Log[(1 + 1/Sqrt[1 - 4 x])/2]/Sqrt[1 - 4 x], {x, 0, 20}], x] Range[0, 20]!] (* Vaclav Kotesovec, Apr 01 2016 *)
a[n_] := HarmonicNumber[n] Pochhammer[n, n];
Array[a, 20] (* Jean-François Alcover, Jun 13 2016 *)
PROG
(Maxima) a(n):=n!*sum(binomial(2*n, n-k)/k, k, 1, n); /* Vladimir Kruchinin, Mar 31 2016 */
(PARI) a(n) = n!*sum(k=1, n, binomial(2*n, n-k)/k); \\ Michel Marcus, Mar 31 2016
(PARI) x='x+O('x^44); Vec(serlaplace(log((1 + 1/sqrt(1-4*x))/2)/sqrt(1-4*x))) \\ Joerg Arndt, Apr 01 2016
CROSSREFS
Sequence in context: A053912 A053894 A053904 * A298835 A082723 A352384
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Dec 26 2000
STATUS
approved