login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 28a for Monster.
1

%I #19 Jun 28 2018 04:19:42

%S 1,1,5,5,11,10,26,25,46,55,91,101,156,181,272,316,457,531,747,862,

%T 1188,1387,1858,2177,2864,3348,4334,5078,6485,7589,9605,11215,14026,

%U 16365,20308,23656,29094,33876,41359,48068,58266,67645,81537,94476,113269,131052,156311,180518

%N McKay-Thompson series of class 28a for Monster.

%H G. C. Greubel, <a href="/A058610/b058610.txt">Table of n, a(n) for n = -1..2500</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Comm. Algebra 22, No. 13, 5175-5193 (1994).

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F Expansion of A - q/A, where A = q^(1/2)*(eta(q^2)*eta(q^7)/(eta(q)* eta(q^14)))^2, in powers of q. - _G. C. Greubel_, Jun 22 2018

%F a(n) ~ exp(2*Pi*sqrt(n/7)) / (2 * 7^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jun 28 2018

%e T28a = 1/q + q + 5*q^3 + 5*q^5 + 11*q^7 + 10*q^9 + 26*q^11 + 25*q^13 + ...

%t eta[q_] := q^(1/24)*QPochhammer[q]; A := q^(1/2)*(eta[q^2]*eta[q^7]/(eta[q]*eta[q^14]))^2; a:= CoefficientList[Series[(A - q/A), {q, 0, 100}], q]; Table[a[[n]], {n, 1, 70}] (* _G. C. Greubel_, Jun 22 2018 *)

%o (PARI) q='q+O('q^50); A = (eta(q^2)*eta(q^7)/(eta(q)*eta(q^14)))^2; Vec(A - q/A) \\ _G. C. Greubel_, Jun 22 2018

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

%K nonn

%O -1,3

%A _N. J. A. Sloane_, Nov 27 2000

%E Terms a(12) onward added by _G. C. Greubel_, Jun 22 2018