login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130744
a(n) = n*(n+2)*n!.
6
0, 3, 16, 90, 576, 4200, 34560, 317520, 3225600, 35925120, 435456000, 5708102400, 80472268800, 1214269056000, 19527937228800, 333456963840000, 6025763487744000, 114887039275008000, 2304854534062080000
OFFSET
0,2
COMMENTS
For n >= 1, a(n) = number whose factorial base representation (A007623) begins with a double digit {n}{n}, which is followed by n-1 zeros. Viewed in that base, this sequence looks like this: 0, 11, 220, 3300, 44000, 550000, 6600000, 77000000, 880000000, 9900000000, AA000000000, BB0000000000, ... (where "digits" A and B stand for placeholder values 10 and 11 respectively). - Antti Karttunen, May 07 2015
FORMULA
0 = +a(n) * (+a(n+1) + 2*a(n+2) - 6*a(n+3) + a(n+4)) + a(n+1) * (+5*a(n+2) - 6*a(n+3) + a(n+4)) + a(n+2) * (+3*a(n+2) - a(n+4)) + a(n+3) * (+a(n+3)) if n>=0. - Michael Somos, Mar 26 2014
From Antti Karttunen, May 07 2015: (Start)
a(n) = n * (n! + (n+1)!) = n * A001048(n+1).
a(n) = A005563(n) * A000142(n).
a(n) = (n+2)! - (n+1)! - n! [from Orlovsky's Mathematica-code].
(End)
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=1} 1/a(n) = (Ei(1) - gamma)/2 - 1/4, where Ei(1) = A091725 and gamma = A001620.
Sum_{n>=1} (-1)^(n+1)/a(n) = (gamma - Ei(-1))/2 - 1/e + 1/4, where Ei(-1) = -A099285 and e = A001113. (End)
EXAMPLE
G.f. = 3*x + 16*x^2 + 90*x^3 + 576*x^4 + 4200*x^5 + 34560*x^6 + ...
MATHEMATICA
a[n_]:=(n+2)!-(n+1)!-n!; (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008 *)
PROG
(Magma) [n*(n+2)*Factorial(n): n in [0..25]]; // Vincenzo Librandi, Aug 11 2011
(PARI) a(n)=n!*(n*(n+2)) \\ Charles R Greathouse IV, Aug 11 2011
(Scheme) (define (A130744 n) (* n (+ 2 n) (A000142 n))) ;; Antti Karttunen, May 07 2015
CROSSREFS
Column 3 of A257503 (apart from initial zero. Equally, row 3 of A257505).
Subsequence of both A227130 and A227148.
Sequence in context: A026330 A146963 A074562 * A344455 A009124 A067679
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jul 12 2007
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, Dec 05 2008
STATUS
approved