login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129999
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+337)^2 = y^2.
5
0, 27, 888, 1011, 1148, 6027, 6740, 7535, 35948, 40103, 44736, 210335, 234552, 261555, 1226736, 1367883, 1525268, 7150755, 7973420, 8890727, 41678468, 46473311, 51819768, 242920727, 270867120, 302028555, 1415846568, 1578730083
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+337, y).
Corresponding values y of solutions (x, y) are in A159574.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (339+26*sqrt(2))/337 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (278307+179662*sqrt(2))/337^2 for n mod 3 = 0.
FORMULA
a(n)=6*a(n-3)-a(n-6)+674 for n > 6; a(1)=0, a(2)=27, a(3)=888, a(4)=1011, a(5)=1148, a(6)=6027.
G.f.: x*(27+861*x+123*x^2-25*x^3-287*x^4-25*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 337*A001652(k) for k >= 0.
a(0)=0, a(1)=27, a(2)=888, a(3)=1011, a(4)=1148, a(5)=6027, a(6)=6740, a(n)=a(n-1)+6*a(n-3)-6*a(n-4)-a(n-6)+a(n-7). - Harvey P. Dale, Feb 26 2015
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 27, 888, 1011, 1148, 6027, 6740}, 40] (* Harvey P. Dale, Feb 26 2015 *)
PROG
(PARI) {forstep(n=0, 500000000, [3, 1], if(issquare(2*n^2+674*n+113569), print1(n, ", ")))}
CROSSREFS
Cf. A159574, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159575 (decimal expansion of (339+26*sqrt(2))/337), A159576 (decimal expansion of (278307+179662*sqrt(2))/337^2).
Sequence in context: A376778 A061695 A107050 * A132059 A292362 A239571
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Jun 15 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, Apr 16 2009
STATUS
approved