OFFSET
1,2
COMMENTS
A number of the form 3*(32*10^n-29) is in the sequence iff n>1 and 1/3*(32*10^n-29) is prime (the proof is easy). The first three such terms are 3*(32*10^3-29),3*(32*10^4-29)& 3*(32*10^9-29).
a(11) > 10^13. - Giovanni Resta, Aug 12 2019
EXAMPLE
phi(950039541)=1/2*(950039541+145930059) so 950039541 is in the sequence.
MATHEMATICA
r[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; Do[c=r[n]; If[c+n== 2EulerPhi[n], Print[n]], {n, 200000000}]
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Farideh Firoozbakht, Apr 29 2007
EXTENSIONS
a(6)-a(8) from Giovanni Resta, Oct 28 2012
a(9)-a(10) from Giovanni Resta, Aug 12 2019
STATUS
approved