login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130002
Alternating sum along antidiagonals of the array of A129952 and its iterated differences.
0
1, 1, 2, 3, 10, 23, 60, 139, 326, 735, 1648, 3635, 7962, 17287, 37316, 80091, 171118, 364079, 771864, 1631107, 3436994, 7223511, 15146092, 31690283, 66176790, 137945983, 287076800, 596523219, 1237785706, 2565049895, 5309056788, 10976027515, 22667882942
OFFSET
0,3
COMMENTS
Define the square array T of A129952 and its iterated differences: T(0,n)=A129952(n), T(d,n)=T(d-1,n+1)-T(d-1,n), d>0. Then a(n) = sum_{d=0..n} (-1)^d*T(d,n-d), the sum along the antidiagonals of T(d,n), alternating signs.
FORMULA
From Chai Wah Wu, Jan 30 2018: (Start)
a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 7*a(n-4) + 4*a(n-5) - 4*a(n-6) for n > 6.
G.f.: (-2*x^6 - 6*x^5 + 3*x^4 + 5*x^3 - 3*x + 1)/((x - 1)^2*(x + 1)^2*(2*x - 1)^2). (End)
EXAMPLE
The original series and first, 2nd etc. differences are the rows of
1..1..2...6..16..40.. <- A129952 = T(0,n)
0..1..4..10..24..56.. <- A129953 = T(1,n)
1..3..6..14..32..72.. <- A129954 = T(2,n)
2..3..8..18..40..88.. <- A129955 = T(3,n)
1..5.10..22..48......
...
a(2) = 2-1+1 = 2. a(3) = 6-4+3-2 = 3. a(4) = 16-10+6-3+1 = 10.
CROSSREFS
Sequence in context: A148059 A089880 A271740 * A320812 A162034 A105286
KEYWORD
nonn
AUTHOR
Paul Curtz, Jun 15 2007
EXTENSIONS
Edited and extended by R. J. Mathar, Jun 30 2008
STATUS
approved