login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239571
Number of ways to place 5 points on a triangular grid of side n so that no two of them are adjacent.
7
0, 0, 27, 999, 11565, 74811, 342042, 1239525, 3799488, 10259640, 25076952, 56552364, 119324403, 238062357, 452774595, 826245798, 1454229216, 2479147536, 4108199481, 6636929805, 10479498849, 16207085223, 24596072424, 36687908235, 53862785520, 77929575480
OFFSET
3,3
COMMENTS
Rotations and reflections of placements are counted. If they are to be ignored see A239575.
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1)
FORMULA
a(n) = (n -3) * (n -4) * (n^8 +12*n^7 -58*n^6 -860*n^5 +2141*n^4 +23728*n^3 -61316*n^2 -244928*n +770880)/3840.
G.f.: -3*x^5*(40*x^8-185*x^7+198*x^6+213*x^5-243*x^4-638*x^3+687*x^2+234*x+9) / (x-1)^11. - Colin Barker, Mar 22 2014
MATHEMATICA
CoefficientList[Series[- 3 x^2 (40 x^8 - 185 x^7 + 198 x^6 + 213 x^5 - 243 x^4 - 638 x^3 + 687 x^2 + 234 x + 9)/(x - 1)^11, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
PROG
(PARI) concat([0, 0], Vec(-3*x^5*(40*x^8-185*x^7+198*x^6+213*x^5-243*x^4-638*x^3+687*x^2+234*x+9)/(x-1)^11 + O(x^100))) \\ Colin Barker, Mar 22 2014
(Magma) [(n^2-7*n+12)*(n^8+12*n^7-58*n^6-860*n^5+2141*n^4 +23728*n^3-61316*n^2-244928*n+770880)/3840: n in [3..40]]; // Vincenzo Librandi, Mar 23 2014
CROSSREFS
Cf. A239567, A239575, A239568 (2 points), A239569 (3 points), A239570 (4 points), A282998 (6 points).
Sequence in context: A129999 A132059 A292362 * A017019 A143366 A143705
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Mar 22 2014
STATUS
approved