login
A239570
Number of ways to place 4 points on a triangular grid of side n so that no two of them are adjacent.
7
0, 1, 114, 1137, 6100, 23265, 71211, 186739, 436437, 932850, 1856305, 3483546, 6224439, 10668112, 17640000, 28271370, 44083006, 67084839, 99893412, 145869175, 209275710, 295463091, 411077689, 564300837, 765118875, 1025627200, 1360371051, 1786725864, 2325320137
OFFSET
3,3
COMMENTS
Rotations and reflections of placements are counted. If they are to be ignored see A239574.
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1)
FORMULA
a(n) = (n-2)*(n-3)*(n^6+9*n^5-39*n^4-353*n^3+950*n^2+4040*n-11904)/384.
G.f.: x^4*(38*x^6-156*x^5+153*x^4+113*x^3-147*x^2-105*x-1) / (x-1)^9. - Colin Barker, Mar 22 2014
MATHEMATICA
CoefficientList[Series[x (38 x^6 - 156 x^5 + 153 x^4 + 113 x^3 - 147 x^2 - 105 x - 1)/(x - 1)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
PROG
(PARI) concat(0, Vec(x^4*(38*x^6-156*x^5+153*x^4+113*x^3-147*x^2-105*x-1)/(x-1)^9 + O(x^100))) \\ Colin Barker, Mar 22 2014
(Magma) [(n^2-5*n+6)*(n^6+9*n^5-39*n^4-353*n^3+950*n^2 +4040*n-11904)/384: n in [3..40]]: // Vincenzo Librandi, Mar 23 2014
CROSSREFS
Cf. A239567, A239574, A239568 (2 points), A239569 (3 points), A239571 (5 points), A282998 (6 points).
Sequence in context: A353746 A251459 A251452 * A002952 A296403 A262416
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Mar 22 2014
STATUS
approved