login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place 4 points on a triangular grid of side n so that no two of them are adjacent.
7

%I #29 Sep 08 2022 08:46:07

%S 0,1,114,1137,6100,23265,71211,186739,436437,932850,1856305,3483546,

%T 6224439,10668112,17640000,28271370,44083006,67084839,99893412,

%U 145869175,209275710,295463091,411077689,564300837,765118875,1025627200,1360371051,1786725864,2325320137

%N Number of ways to place 4 points on a triangular grid of side n so that no two of them are adjacent.

%C Rotations and reflections of placements are counted. If they are to be ignored see A239574.

%H Vincenzo Librandi, <a href="/A239570/b239570.txt">Table of n, a(n) for n = 3..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1)

%F a(n) = (n-2)*(n-3)*(n^6+9*n^5-39*n^4-353*n^3+950*n^2+4040*n-11904)/384.

%F G.f.: x^4*(38*x^6-156*x^5+153*x^4+113*x^3-147*x^2-105*x-1) / (x-1)^9. - _Colin Barker_, Mar 22 2014

%t CoefficientList[Series[x (38 x^6 - 156 x^5 + 153 x^4 + 113 x^3 - 147 x^2 - 105 x - 1)/(x - 1)^9, {x, 0, 40}], x] (* _Vincenzo Librandi_, Mar 23 2014 *)

%o (PARI) concat(0, Vec(x^4*(38*x^6-156*x^5+153*x^4+113*x^3-147*x^2-105*x-1)/(x-1)^9 + O(x^100))) \\ _Colin Barker_, Mar 22 2014

%o (Magma) [(n^2-5*n+6)*(n^6+9*n^5-39*n^4-353*n^3+950*n^2 +4040*n-11904)/384: n in [3..40]]: // _Vincenzo Librandi_, Mar 23 2014

%Y Cf. A239567, A239574, A239568 (2 points), A239569 (3 points), A239571 (5 points), A282998 (6 points).

%K nonn,easy

%O 3,3

%A _Heinrich Ludwig_, Mar 22 2014