login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129473
Primes p of Erdos-Selfridge class 5+ with largest prime factor of p+1 not of class 4+.
6
15913, 18541, 22921, 36353, 47741, 49201, 52267, 55333, 60589, 64969, 66137, 66721, 69203, 72707, 73291, 74167, 75773, 78401, 79861, 80737, 82051, 84533, 90227, 90373, 95191, 95483, 95629, 97673, 99133, 101323, 103951, 104681, 104827
OFFSET
1,1
COMMENTS
EXAMPLE
a(1) = 15913 = -1+2*73*109 is a prime of class 5+ since 73 is of class 4+, but the largest divisor of 15913+1 is 109 which is only of class 2+.
PROG
(PARI) class(n, s=1)={n=factor(n+s)[, 1]; if(n[ #n]<=3, 1, for(i=2, #n, n[1]=max(class(n[i], s)+1, n[1])); n[1])}; A129473(n=100, p=1, a=[])={ local(f); while( #a<n, until( f[ #f] > 3 & 4 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[, 1]); forstep( i=#f-1, 2, -1, if( 5 < f[1] = max( f[1], 1+class( f[i] )), next(2))); if( f[1] == 5, a=concat(a, p); /*print(#a, " ", p)*/)); a}
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Apr 17 2007
STATUS
approved