login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129472
Primes p of Erdos-Selfridge class 4+ with largest prime factor of p+1 not of class 3+.
4
3181, 4513, 4957, 6067, 7177, 8731, 9397, 10433, 13171, 14947, 15761, 17389, 19387, 19609, 22051, 22273, 22453, 22717, 23531, 23753, 24197, 26161, 27823, 28711, 37369, 37591, 38183, 38923, 39293, 40993, 41143, 42697, 43067, 44621, 44843
OFFSET
1,1
COMMENTS
EXAMPLE
a(1) = 3181 = -1+2*37*43 is a prime of class 4+ since 37 is of class 3+, but the largest divisor of 3181+1 is 43 which is only of class 2+.
PROG
(PARI) class(n, s=1)={n=factor(n+s)[, 1]; if(n[ #n]<=3, 1, for(i=2, #n, n[1]=max(class(n[i], s)+1, n[1])); n[1])}; A129472(n=100, p=1, a=[])={ local(f); while( #a<n, until( f[ #f] > 3 & 3 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[, 1]); forstep( i=#f-1, 2, -1, if( 4 < f[1] = max( f[1], 1+class( f[i] )), next(2))); if( f[1] == 4, a=concat(a, p); /*print(#a, " ", p)*/)); a}
CROSSREFS
Sequence in context: A155484 A345599 A345858 * A023309 A023337 A236131
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Apr 17 2007
STATUS
approved