login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129478
Primes p of Erdos-Selfridge class 7+ with largest prime factor of p+1 not of class 6+.
6
17227801, 18207913, 18592957, 19433053, 19608073, 19678081, 20028121, 20518177, 20658193, 20833213, 21043237, 21218257, 21533293, 21743317, 22128361, 22303381, 23668537, 25068697, 25418737, 25453741
OFFSET
1,1
COMMENTS
EXAMPLE
a(1) = 17227801 = -1+2*2917*2953 = A129469[7] is a prime of class 7+ since 17227801+1 has prime factor 2917 = A081634[1] = A005113[6] of class 6+, but the largest prime factor of 17227801+1 is 2953 = A005107[175] of class 3+.
PROG
(PARI) class(n, s=1)={n=factor(n+s)[, 1]; if(n[ #n]<=3, 1, for(i=2, #n, n[1]=max(class(n[i], s)+1, n[1])); n[1])}; a129478(n=100, p=1, a=[])={local(f, a6=A005113[6]); p=max(p, a6*nextprime(a6+1)*2-2); while( #a<n, until( #f>2 & f[ #f-1] >= a6 & 6 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[, 1]); forstep( i=#f-1, 2, -1, if( 7 < f[1] = max( f[1], 1+class( f[i] )), next(2))); if( f[1] == 7, a=concat(a, p); print(#a, " ", p))); a}
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Apr 17 2007
STATUS
approved