login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129290 Base 3 Fermat numbers: 3^(3^n) + 1. 3
4, 28, 19684, 7625597484988, 443426488243037769948249630619149892804, 87189642485960958202911070585860771696964072404731750085525219437990967093723439943475549906831683116791055225665628 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Apparently discovered (with arbitrary base) by Gottschalk in 1938 and independently by Ferentinou-Nicolacopoulou in 1963. [Charles R Greathouse IV, Jul 05 2011]

a(n) divides a(n+1). a(n+1)/a(n) = (3^(3^(n+1)) + 1)/(3^(3^n) + 1) = 1 - 3^(3^n) + 9^(3^n) = A002061(3^(3^n)) = A129291(n) = {7, 703, 387400807, 58149737003032434092905183, ...}.

REFERENCES

J. Ferentinou-Nicolacopoulou, "Une propriété des diviseurs du nombre r^(r^m)+1. Applications au dernier théorème de Fermat." Bulletin Société Mathématique de Grèce 4:1 (1963), pp. 121-126.

LINKS

Table of n, a(n) for n=0..5.

Eugen Gottschalk, Zum Fermatschen Problem, Mathematische Annalen 115 (1934), pp. 157-158.

FORMULA

a(n) = 3^(3^n) + 1. a(n) = A055777(n) + 1.

MATHEMATICA

Table[3^3^n+1, {n, 0, 6}]

PROG

(PARI) a(n)=3^(3^n)+1 \\ Charles R Greathouse IV, Jul 05 2011

CROSSREFS

Cf. A000215 = Fermat numbers: 2^(2^n) + 1. Cf. A055777 = 3^(3^n). Cf. A129291 = A129290(n+1) / A129290(n). Cf. A002061 = Central polygonal numbers: n^2 - n + 1.

Sequence in context: A218174 A220756 A202713 * A307553 A327436 A247278

Adjacent sequences:  A129287 A129288 A129289 * A129291 A129292 A129293

KEYWORD

nonn

AUTHOR

Alexander Adamchuk, Apr 08 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 03:41 EST 2019. Contains 329968 sequences. (Running on oeis4.)