login
A129291
a(n) = 1 - 3^(3^n) + 9^(3^n).
1
7, 703, 387400807, 58149737003032434092905183, 196627050475552913618075908526912116282660024455971729157367165907347241304007
OFFSET
0,1
COMMENTS
a(n) is the ratio of two consecutive base-3 Fermat numbers A129290(n) = 3^(3^n) + 1 = {4, 28, 19684, 7625597484988, ...}.
FORMULA
a(n) = A002061(3^(3^n)). a(n) = A129290(n+1) / A129290(n).
MATHEMATICA
Table[1 - 3^3^n + 9^3^n, {n, 0, 5}]
CROSSREFS
Cf. A129290 (3^(3^n) + 1).
Cf. A055777 (3^(3^n)).
Cf. A002061 (central polygonal numbers: n^2 - n + 1).
Sequence in context: A261696 A174855 A186160 * A229149 A159815 A070746
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Apr 08 2007
STATUS
approved